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Abstract

Many existing statistical models for networks overlook the fact that most real-world net-
works are formed through a growth process. To address this, we introduce the PAPER (Pref-
erential Attachment Plus Erdés—Rényi) model for random networks, where we let a random
network G be the union of a preferential attachment (PA) tree T and additional Erdés-Rényi
(ER) random edges. The PA tree component captures the underlying growth/recruitment pro-
cess of a network where vertices and edges are added sequentially, while the ER component can
be regarded as random noise. Given only a single snapshot of the final network G, we study the
problem of constructing confidence sets for the early history, in particular the root node, of the
unobserved growth process; the root node can be patient zero in a disease infection network or
the source of fake news in a social media network. We propose an inference algorithm based on
Gibbs sampling that scales to networks with millions of nodes and provide theoretical analysis
showing that the expected size of the confidence set is small so long as the noise level of the
ER edges is not too large. We also propose variations of the model in which multiple growth
processes occur simultaneously, reflecting the growth of multiple communities, and we use these
models to provide a new approach to community detection.

1 Introduction

Network data is ubiquitous. To analyze networks, there are a variety of statistical models such
as Erdés—Rényi, stochastic block model (SBM) (Abbe; 2017; Karrer and Newman; 2011; Amini
et al.; 2013; Xu et al.; 2018), graphon (Diaconis and Janson; 2007; Gao et al.; 2015), random dot
product graphs (Athreya et al.; 2017; Xie and Xu; 2019), latent space models (Hoff et al.; 2002),
configuration graphs (Aiello et al.; 2000), and more. These models usually operate by specifying
some structure, such as community structure in the case of SBM, and then adding independent
random edges in a way that reflects the structure. The order in which the edges are added is of no
importance to these models.

In contrast, real world networks are often formed from growth processes where vertices and edges
are added sequentially. This motivates the development of Markovian preferential attachment (PA)
models for networks (Barabdsi and Albert; 1999; Barabdsi; 2016) which produce a sequence of
networks G1,Go,...,G, where G starts as a single node which we call the root node and, at
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each iteration, we add a new node and new edges. PA models naturally produce networks with
sparse edges, heavy-tailed degree distributions, and strands of chains as well as pendants (several
degree 1 vertices linked to a single vertex), which are important features of real world networks that
are difficult to reproduce under a non-Markovian model, as observed by Bloem-Reddy and Orbanz
(2018).

Although Markovian models are often more realistic, they have not been as widely used in
network data analysis as, say SBM, because, whereas SBM is useful for recovering the community
structure of a network, it is not obvious what structural information Markovian models could extract
from a network. Recently however, seminal work from a series of applied probability papers (e.g.
Bubeck, Devroye and Lugosi (2017); Bubeck et al. (2015)) demonstrate that Markovian models can
indeed recover useful structure: these papers show that, surprisingly, when G,, is a random PA tree,
one can infer the early history of G,,, such as the root node, even as the size of the tree tends to
infinity. Although these results are elegant, they are theoretical; their confidence set construction
involves large constants that render the result too conservative. Moreover, most algorithms apply
only to tree-shaped networks, which prohibitively limits their application since trees are rarely
encountered in practice.

To overcome these problems, we propose a Markovian model for networks which we call Pref-
erential Attachment Plus Erdés—Rényi, or PAPER for short. We say that G, has the PAPER
distribution if it is generated by adding independent random edges to a preferential attachment
tree T'. The latent PA tree captures the growth process of the network whereas the ER random
edges can be interpreted as additional noise. Given only a single snapshot of the final graph G,,,
we study how to infer the early history of the latent tree T', focusing on the concrete problem of
constructing confidence sets for the root node that can attain the nominal coverage. We give a
visual illustration of the PAPER model and the inference problem in Figure 1.

Because we do not know which edges of G,, correspond to the tree and which are noise, most
existing methods are not directly applicable. We therefore propose a new approach in which we
first give the nodes new random labels which induce, for a given observation of the network G,,,
a posterior distribution of both the latent tree and the latent arrival ordering of the nodes. Then,
we sample from the posterior distribution to construct a credible set for the inferential target, e.g.
the root node. Bayesian inference statements usually do not have frequentist validity but we prove
in our setting that that the level 1 — € credible set for the root node has frequentist coverage at
exactly the same level.

In order to efficiently sample from the posterior distribution of the latent ordering and the latent
tree, we present a scalable Gibbs sampler that alternatingly samples the ordering and the tree. The
algorithm to generate the latent ordering is based on our previous work (Crane and Xu; 2021) which
studies inference in the tree setting. The algorithm to generate the latent tree operates by updating
the parent of each of the nodes iteratively. The overall runtime complexity of one iteration of the
outer loop is generally O(m+nlogn) (where m is the number of edges) and the algorithm can scale
to networks of up to a million nodes.

Since a trivial confidence set for the root node is the set of all the nodes, it is important to be
able to bound the size of a confidence set. In particular, the presence of noisy Erdés—Rényi edges
in the PAPER model motivates an interesting question: how does the size of the confidence set
increase with the noise level? In this paper, we give an initial answer to this question under two
specific settings of the preferential attachment mechanism: linear preferential attachment (LPA)
and uniform attachment (UA). For LPA, we prove that the size of our proposed confidence set does
not increase with the number of nodes n so long as the noisy edge probability is less than n~1/2
and for UA, we prove that the size is bounded by n? for some v < 1 so long as the noisy edge
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Figure 1: Left: illustration of PAPER model; nodes have latent time ordering (only first 10
orderings shown); the red edges form the latent tree while gray edges are Erdés—Rényi. Right:
80% confidence set for the root node (node number 1) constructed from the unlabeled graph.

probability is less than log(n)/n. Our analysis shows that the phenomenon discovered by Bubeck,
Devroye and Lugosi (2017), that there exists confidence sets for the root node of O(1) size, is robust
to the presence of noise.

Many real world networks often have community structures. In such cases, it would be unrealistic
to assume that the network originates from a single root node. We therefore propose variations of
the PAPER model in which K growth processes occur simultaneously from K root nodes. Each of
K root nodes can be interpreted as being locally central with respect to a community subgraph. In
the multiple roots model, there is no longer a latent tree but rather a latent forest (union of disjoint
trees), where the components of the forest can naturally be interpreted as the different communities
of the network. We provide model formulation that allows K to be either be fixed or random. To
analyze networks with multiple roots, we use essentially the same inferential approach and Gibbs
sampling algorithm that that we develop for the single root setting, with minimal modifications.

By looking at the posterior probability that a node is in a particular tree-community, we can
estimate the community membership of each of the nodes. Compared with say the stochastic
block model, the PAPER model approach to community recovery has the advantage that the in-
ference quality improves with sparsity, that we can handle heavy-tailed degree distribution without
a high-dimensional degree correction parameter vector, and that the posterior root probabilities
also identify the important nodes in the community. Empirically, we show that our approach has
competitive performance on two benchmark datasets and we find that our community member-
ship estimate is more accurate for nodes with high posterior root probability than for the more
peripheral nodes. We also use the PAPER model to conduct an extensive analysis of a statistician
co-authorship network curated by Ji and Jin (2016) where we recover a large number of communities
that accurately reflect actual research communities in statistics.

We have implemented our inference algorithm in a Python package called paper-network, which
can be installed via command pip install paper-network. The code, example scripts, and doc-
umentation are all publicly available at https://github.com/nineisprime/PAPER.

Outline for the paper: In Section 2, we define the PAPER model in both the single root and



multiple roots setting. We also formalize the problem of root inference and review related work. In
Section 3, we describe our approach to the root inference problem, which is to randomize the node
labels and analyze the resulting posterior distribution. We also show that the Bayesian inferential
statements have frequentist validity. In Section 4, we give a sampling algorithm for computing the
posterior probabilities. In Section 5, we provide theoretical bounds on the size of our proposed
confidence sets and in Section 6, we provide empirical study on both simulated and large scale real
world networks.
We use the following notation throughout the paper:

e We take all graphs to be undirected. Given two labeled graphs g and g’ defined on the same
set of nodes, we write g + g’ as the resulting graph if we take the union of the edges in g and
g’ and collapse any multi-edges. We also write g C g’ if g is a subgraph of g’.

e For a labeled graph g, we write Dg(u) as the degree of node u in graph g and Ng(u) as the
set of neighbors of u (all nodes directly connected to u) with respect to g; we write V(g) and
E(g) as the set of vertices and edges of g respectively.

e For an integer n, we write [n] := {1,2,...,n}. For a countable set A, we write |A| as the
cardinality of A. For two sets A, B of the same cardinality, we write Bi(A, B) as the set of
bijections between them. For a vector 7, we let 1. be the sub-vector (71,72, ..., 7TK).

e Given a finite set V' of the same cardinality of V(g) and given a bijection p € Bi(V(g), V'),
we write pg to denote a relabeled graph where a pair (v/,v") € V/ x V' is an edge in pg if and
only if (u,v) € V(g) x V(g) is an edge in g.

e Throughout the paper, we use capital font (e.g. G) to denote random objects and lower case
font to denote fixed objects. Graphs are represented via bold font.

2 Model and Problem

We first describe the model and inference problem in the single root setting and then extend the
definition to the setting of having fixed K roots and having random K roots.

2.1 PAPER model

Definition 1. The affine preferential attachment tree model, which we denote by APA(«, ) for
parameters «, € R, generates an increasing sequence Ty C Tp C ... C T, of random trees where
T; is a tree with ¢ nodes and where nodes are labeled by their arrival time so that V(T;) = [t]. The
first tree T4 = {1} is a singleton node, which we refer to as the root node, and for ¢ > 2, we define
the transition kernel P(T} | T;—1) in the following way: given T;_1, we add a node labeled ¢ and a
random edge (¢, w;) to obtain T}, where the existing node w; € [t — 1] is chosen with probability

/GDTt—l(wt) +a
B2(t—2)+a(t—1)

(1)

To ensure that (1) is always non-negative, we require either o, 5 > 0 or, if § < 0, then o = —¢f
for some integer ¢ > 0. We may verify that (1) describes a valid probability distribution by noting
that T;_; always has t — 2 edges and ¢t — 1 nodes. Before continuing onto the PAPER model, we
consider some specific examples of APA trees:



1. setting @ = 1, 8 = 0 means that we select w; uniformly at random from V(T;_;1). This yields
the uniform attachment (UA) random tree. The resulting degree distribution has exponential
tail and the maximum degree is of order logn (Na and Rapoport; 1970; Addario-Berry and
Eslava; 2018).

2. Setting a = 0,8 = 1 means that we select w; with probability proportional to the degree
Dr, _,(w¢). This yields the linear preferential attachment random (LPA) tree. LPA has
heavy-tailed degree distribution and a maximum degree is of order \/n (Bollobds et al.; 2001;
Pekoz et al.; 2014).

3. We may also set 8 as —1 and « as some positive integer so that the maximum degree of
any node is a. This may be interpreted as an uniform attachment tree growing on top of a
background infinite a-regular tree (Khim and Loh; 2017).

We may generalize Definition 1 by defining a nonparametric function ¢ : N — [0, 00) and choose
wy with probability proportional to ¢(Dr,_, (w;)). In this paper however, we focus only on the case
where ¢ is an affine function.

Definition 2. To model a general network, we define the PAPER(a, 8, 6) (Preferential Attachment
Plus Erdés—Rényi) model parametrized by a, 8 € R and 6 € [0,1]. We say that a random graph
G, distributed according to the PAPER(«, /3, 60) model if

Gn = Tn + Rna

where T,, ~ APA(a, 8) and R,, ~ Erdds—Rényi(f) are independent random graphs defined on the
same set of vertices [n].

Since we collapse any multi-edges that occur when we add R, to T},, we may view R,, equiv-
alently as an ER random graph defined on potential edges excluding those already in the tree T,.
The PAPER model can produce networks with either light tailed or heavy tailed degree distribu-
tion depending on the choice of the parameters o and 3. It produces features that are commonly
seen in real world networks but absent from non-sequential models like SBM, such as pendants (a
node with several degree-1 node attached to it) and chains of nodes; see Figure 2. It also assigns
a non-zero probability to any connected graph, in contrast to the general preferential attachment
graph model where a fixed m > 1 edges are added at every iteration (Barabdsi and Albert; 1999).
In computer science terminology, G,, is a planted tree model where the signal T, is planted in an
ER random graph R,, in the same sense that stochastic block model is often referred to as the
planted partition model.

An alternative way to define the PAPER model is to specify the total number of edges m in
the final graph and generate R, as a uniformly random graph with m — (n — 1) edges (since a tree
with n nodes always has n — 1 edges). This is equivalent to the PAPER(«, 8, 6) model where we
condition on the event that the final graph G,, has m edges. To simplify exposition, we use PAPER
to refer to this conditional model as well.

Remark 1. We may view the PAPER(a, 8,0) model as a Markovian process over a sequence of
networks G1, G, ..., G,. We define the transition kernel P(G; | Gi_1) for t > 3 by first adding a
new node labeled ¢, then adding a new tree edge (¢, w;) where w; is chosen with probability (1),
and then, for each existing node j € [t — 1] not equal to w;, we independently add a noise edge (¢, j)
with probability 6.

Interestingly, when @ = 1 and 8 = 0, we see that the PAPER model is the conditional dis-
tribution of an Erdés—Rényi graph G conditional on the event that, for some fixed ordering p of



Figure 2: Left: PAPER graph with a« = 1,8 = 1; Center: co-authorship graph from Ji and Jin
(2016); Right: protein-protein interaction graph from Jeong et al. (2001).

the nodes, the sequence of induced subgraphs G N {p1,...,p:} for t € [n]| are all connected. In
Section 2.3, we extend the PAPER model so that the noise edge probability is allowed to depend
on the time ¢ and the state of the tree at time ¢.

Remark 2. Under APA(q, 8) model, the probability of generating a given tree has a closed form

Dy, (0)=1 .
expression: P(T,, =t,) = nfi[en["] l;l(ig) 3 Ht(fi;; a). The important consequence is that the likelihood
t=3

depends on the tree ¢, only through its degree distribution Dy, (). Hence, any two trees with
the same degree distribution has the same likelihood; Crane and Xu (2021) refers to this property
as shape-exchangeability. We give the likelihood expression for the multiple roots models and the
PAPER model in Section S1.1 of the Appendix.

Remark 3. Tt is known that the degree distribution of an APA(«, ) tree has an asymptotic limit.
For example, if § = 1 and a > 0, then we have by Van Der Hofstad (2016, Theorem 8.2) that
IS {Dg, (t) =k} — 3212(2 5;11 j«if;r«s;a as n — oo uniformly over all k. The limiting distri-
bution is approximately a power law where the number of nodes with degree k is proportional to
k=342 (see Van Der Hofstad (2016, Section 8.4)). Since the ER graph R, only adds an expected

additional degree of at most né to every node, we see that, when 6 is small, the PAPER graph can

have heavy-tailed degree distribution without any additional degree correction parameters.

Single root inference problem: Let G,, ~ PAPER(q,3,0) be a random graph. As the nodes
of G,, are labeled by their arrival time, our observation is the unlabeled shape sh(G,,), that is, the
network G,, with the labels removed. Our goal is to construct a subset of nodes that is guaranteed
to contain the true root node (node with arrival time 1) with probability at least 1 —e. Since we
need to refer to specific nodes of sh(G,,), we give the nodes of sh(G,,) names from an arbitrary
alphabet U,, of n elements to form a labeled graph G such that V(G}) = U,,. We take G, as our
observation from this point on.

We note that there exists an unobserved label bijection p € Bi([n],U,,) such that pG, = G}.
This unobserved p captures precisely the arrival time of the nodes in that for any time ¢ € [n], the
node with label p; in G}, is exactly node with arrival time ¢ in G,,. In particular, node p; of the
observed graph G is the true root node. To illustrate the setting clearly, we provide a concrete
example in Figure 3.

Definition 3. For € € (0,1), we say that a set C.(G}) C U, is a level 1 — € confidence set for the
root node if

B(p € C(G)) > 1 (2)



unlabeled shape

time labeled G,

equivalently, we observe an arbitrarily
alphabetically labeled G,

p:1-»B,2—~A3—-C4—-D5—E6—F

We have G, = pG,,. The root node of G}, is p; = B.

Figure 3: Our observation is the unlabeled shape or alphabetically labeled G, instead of time
labeled G,,. There exists an unobserved ordering p € Bi([n],U,,) such that G}, = pG,,.

One may construct a trivial confidence set for the root nodes by taking the set of all the nodes.
We aim therefore to make the confidence set C.(-) as small as possible. Although we focus on the
problem of root inference, the approach that we develop is applicable to more general problems
such as inferring the first two or three nodes or inferring the arrival time of a particular node.

Remark 4. It is important to note that G} may have multiple nodes that are indistinguishable
once the node labels are removed, which may lead to the paradoxical scenario that which node
of G}, correspond to the true root node depends on the choice of the label bijection p. Luckily,
this is a technical issue that does not pose a problem so long as we restrict ourselves to confidence
sets C¢(-) that are labeling equivariant in that they do not depend on the specific node labeling.
Labeling equivariance is a very weak condition that only rules out confidence sets that can access
side information about the nodes somehow.

Formally, we note that there may exist p,p’ € Bi([n],U,) where p; # p} but both satisfy
G: = pG,, = p'G,; in other words, root node can only be well-defined up to an automorphism. We
illustrate a concrete example in Figure 4. We define Cc(-) to be labeling equivariant if, for all 7 €

Bi(Uyn, Uy, ), we have TC(G) = C(TGY); if the confidence set algorithm contains randomization
(to break ties for example), then we say it is labeling equivariant if 7C.(G},) < C.(TG3) for all
T € Bi(Un,U,). If a confidence set C.(-) is labeling equivariant, then for any p, p’ € Bi([n],U,,) such

that G, = pG,, = p'G,,, we have that (p’ o p~!)G}, = G, and hence,
p1€C(Gr) & (pop H)pr € (p op ™ )CAGr) & ph € C(p/ 0 p™1)G) & pi € C(G).

Therefore, the coverage probability (2) does not depend on the choice of p.

2.2 Multiple roots models

Many real world networks have multiple communities that grow simultaneously form multiple
sources. The APA model allows for only one root node in the graph but we can augment the
model to describe networks that grow from multiple roots. When there are K roots, we start the
growth process with an initial network of K singleton nodes and attach each new node to an existing
node w; with probability proportional to g - (degree of w;) + « as before.

However, one complication is that when « = 0, the probability of attaching to a singleton node
is 0. Thus, for convenience, we give each root node an unobserved imaginary self-loop edge for the
purpose of computing the attachment probabilities.



p:1—-A2—-B3—C4—D

p:1—-D2—B3—=C4— A

Figure 4: Both p (red) and p’ (blue) are distinct bijections in Bi([n],U,,) but they both satisfy
G: = pG,, = p'G,. The root node is D according to p but A according to p’. Note that nodes A
and D are indistinguishable if the labels are removed.

Definition 4. We first define the APA(a, 8, K') model for a random forest of K disjoint component
trees: let K € Nand for t € S := {1,2,..., K} (the set S is the set of root nodes), let F} be the
set of singleton nodes 1,2,...,t. For t > K, we define the transition kernel P(F; | F;_1) in the
following way: given F;_1, we add a new node t and a new random edge (¢, w;) where the existing
node w; € [t — 1] is chosen with probability

ﬁDthl(wt) + 251{71& S S} + «
28+ a)(t—1)

We then say that a random graph G,, ~ PAPER(c¢, 8, K,0) if G,, = F,, + R,, where F,, ~
APA(q, 3, K) and R,, ~ ERy is an Erdés-Rényi random graph independent of F,, defined on the
same set of nodes [n]. We refer to this setting as the fized K setting. In contrast, we refer to the
PAPER(«, 3, 6) model in Section 2.1 as the single root setting.

(3)

We can verify the normalization term (3) by noting that each root node starts with one imag-
inary self-loop and that we add one node and one edge at every iteration. The theory of Polya’s
urn immediately implies that the number of nodes in each of the K component trees, divided by n,
has the asymptotic distribution of Dirichlet(%, cel %)

To deal with networks in which the number of roots K is unknown, we propose a variation of the
PAPER model with random K number of roots. We can express the model as a sequential growth
process where every newly arrived node has some probability of becoming a new root. Similar to
the fixed K setting, we give each new root node an imaginary self-loop edge for the purpose of
determining the attachment probabilities.

Definition 5. We first define the APA(«, 3, ap) model for a random forest graph: let F; be a
singleton node and let S = {1}. For k£ > 1, we define the transition kernel P(F;|F;_1) in the
following way: given F;_1, we add a new node t. With probability
Qo
28+ a)({t—1)+ag’

we let ¢ be a new root node to form F; and add ¢ to set S. Or, we add a new edge (t,w;) to Fi_1
to obtain F; where the existing node w; € [t — 1] is chosen with probability

BDp,_, (w) + a+281{w; € S}
28+ a)(t—1)+ ag

Note that the resulting set of root nodes S C [n] of F,, is a random set.



We then say that a random graph G,, has the PAPER(«, 3, ag, 0) distribution if G,, = F,, + R,
where F,, ~ APA(a, 8,9) and R,, ~ ER(0) is an Erdés—Rényi random graph independent of F,
defined on the same set of nodes [n]. We refer to this setting as the random K setting.

In the random K setting, each node has some probability of becoming a new root node and

creating a new component tree in the same way as the Dirichlet process mixture model, which is
often called the Chinese restaurant process. Therefore, the expected number of component trees is
(1+0(1)) mstay logn (Crane; 2016, Section 2.2).
Multiple roots inference problem: We observe G}, = pG,, for an unknown label bijection
p € Bi([n],U,). In both the APA(a, 8, K) and the APA(«, 8, ap) models, the root nodes is a set
S which is fixed to be [K] in the first model and random in the second model. Intuitively, we
interpret S as a set of local roots, where each root is central with respect to a specific community
or sub-network represented by a component tree in the forest F,, in Definition 4 or 5. The root
inference problem is then, for a given € € (0,1), to construct a confidence set C.(G},) such that

P(pS CC(Gy)) >1—e.

We illustrate this notion of local roots in a synthetic example in Figure 6.

Remark 5. (Interpretation of community under the PAPER model)

The disjoint component trees of F;, induce a community structure on the graph G,,. This way
of modeling community by adding Erdés—Rényi noise to disjoint subgraphs follows the same spirit
as stochastic block model (SBM): a SBM with K communities, p as the within-community edge
probability, and g < p as the between-community edge probability can be similarly defined as first
generating K disjoint ER( %) graphs on each of the communities and then taking the union of
that with ER(¢g) noisy edges on all the nodes, collapsing multi-edges.

The PAPER notion of community is however different from that described by SBM. The PA-
PER notion of community is based on Markovian growth process and intuitively characterized by
the imbalance of spanning trees on a network, that is, we believe a network to contain multiple
communities if the spanning trees of the network tend to be highly imbalanced (see Figure 5), which
would suggest that the network is very unlikely to have been formed from a single homogeneous
growth process.

Figure 5: The karate club network (left) has two true communities. Most spanning trees of the
whole karate club network would be imbalanced (such as the tree on the right), showing that the
karate club network is very unlikely to have been formed from a single homogeneous growth process
and hence very likely to contain multiple communities.

The PAPER model also produces more within-community edges than between-community edges
because each community has a spanning tree. However, since a tree on n nodes only has n—1 edges,



the difference in the within-community edge density and the between-community edge density is
diminishingly small when the noise level 6 is of an order larger than w(%) In this case, the peripheral
leaf nodes of a community-tree become impossible to cluster but it is still possible to recover the
root node of each of the community-trees, as our experimental results show. One disadvantage of
the PAPER notion of community is that it is not able to capture non-assortative clusters where
nodes in the same clusters are unlikely to form edges.

The PAPER notion of community is appropriate in many application. For example, for a
co-authorship network where there exists an underlying growth process, our empirical analysis in
Section 6.5 shows that the PAPER model captures clusters that accurately reflect salient research
communities. We can also combine both notions by a PAPER-SBM mixture model, where we
generate a preferential attachment forest F, via the mechanism described in Definition 4 or 5,
then, for every pair of nodes u and v, we add a noisy edge (u,v) with probability 6; if v and v
belong to the same tree in F;, and with a different probability 85 if u and v belong to different
trees. The inference method and algorithm that we develop in this manuscript can extend to such
a PAPER-SBM mixture model, but the computational run-time would be substantially slower. We
relegate a detailed study of a PAPER-SBM mixture model to a future work.

Figure 6: Left: illustration of PAPER model with K = 2 underlying trees; nodes have latent time
ordering (only first 10 orderings shown); the red edges form the latent tree while gray edges are
Erd6s-Rényi. Right: 80% confidence set for the set of root nodes (node number 1 for tree 1 and
node number 2 for tree 2) constructed from the unlabeled graph.

2.3 Sequential noise models

As suggested in Remark 1, PAPER model is a special case of a general Markovian process over
a sequence of networks G1,Go, ..., G, based on a latent sequence of trees 11,75, ..., T,. In the
general framework, we specify the transition kernel P(G; | Gi—1) by specifying two stages:

1. (tree stage) P(T; | Ti—1,Gi—1) which adds one node ¢ and one tree edge and
2. (noise stage) P(G | T}, G¢—1) which adds more random edges to obtain G;.

We can of course define P(G¢|Gi—1) without having an underlying tree but the key insight of
our approach is that augmenting the model with the latent tree T, greatly facilitates the design
of tractable models and inference algorithms because calculations on trees are easy and fast. In
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addition, the latent tree has a real world interpretation as the recruitment history — a tree edge
between nodes (u, v) implies that node u recruited node v into the network.

In the noise stage, if we independently adds noise edges between the new node ¢ and the existing
nodes with the same probability €, then we get back the single root PAPER model. More generally,
we can let the noise edge probability depend on the time ¢ and the state of the graph at time ¢.
We define the following extension which we refer to as the seq-PAPER model with parameters

(a7679ada6):

Definition 6. We start with a singleton root node Th = Gy = {1}. At time ¢ = 2, we add node 2
and attach it to node 1. At time ¢ > 3 :

1. (tree stage) We add new node t; we select node an existing node w; € [t — 1] with probability

% and add edge (t,w;) to T;—1 to form Ty;

2. (noise stage) for each existing node j € [t—1], we add edge (¢, j) independently with probability

g = 0 IBDTt:l (.]) +& - Al (4)
2t—-2)+ (t—1)a

Tt is possible that we add the tree edge (j, w;) in the noise stage in which case we collapse the
multi-edge.

In general, we may take B = and & = a but we allow them to be distinct in the model definition
for greater flexibility. We discuss parameter estimation in Section S3.5.4 of the Appendix.

When t is large, the independent Bernoulli generative process approximates a Poisson growth
model (see e.g. Sheridan et al. (2008)) where we first generate M ~ Poisson(f), and then repeat
M times the procedure where we draw an existing node j € [t — 1] with probability ¢; (also with
replacement) and then add the edge (¢, 7) to the random network, collapsing multi-edges if any are
formed. We thus add an average of approximately 6 noise edges at each time step. In contrast,
under the PAPER model where the noise edge probability is 8, we add on average (¢t — 2) - 6 noise
edges at time t¢.

The approximation error between the Bernoulli mechanism and the Poisson mechanism, in
each iteration ¢, converges to 0 in total variation distance as ¢ increases; see rigorous statement
and proof in Proposition S4 of Section S1.2 in the Appendix. However, it is important to note
that the two mechanisms could still produce final random graphs whose overall distributions have
total variation distance bounded away from 0. For example, UA or LPA trees are known to be
sensitive to initialization so that different initial seeds could lead to very different distributions
over the final observed graph, see e.g. Bubeck et al. (2015) and Curien et al. (2015). In this
work, we prefer the Bernoulli generative process in order to simplify the inference algorithm. Even
with the Bernoulli approximation however, inference under the sequential setting is much more
computationally intensive than the vanilla PAPER model.

A more realistic extension of the seq-PAPER model is to replace the tree degree Dr, , (j) with
the graph degree Dg,_,(j) in the noise probability 4. This small change unfortunately leads to
additional significant slowdown in the resulting inference algorithm; see Remark 9 for more detail.
We note that an even more sophisticated model of sequential noise is one where the additional noise
edges are generated by a random walk mechanism (Bloem-Reddy and Orbanz; 2018); Bloem-Reddy
and Orbanz (2018) proposes a sequential Monte Carlo inference method which may not scale well
to large networks.

We have so far considered additive noise where new edges are added to the network. We can
also model deletion noise where each tree edge is removed from the observed network independently
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with some probability > 0. Having deletion noise under the vanilla PAPER model can adversely
increase the size of the confidence set for the root node. However, the seq-PAPER model is much
more resilient to deletion noise, especially when B = 8 and & = « since the noise edges also contain
sequential information. To be precisely, we define the seq-PAPER(«, 83,6, &, B,n) as the model
where we first generate G,, according to the seq-PAPER(«, 3,0, &, B) model with latent spanning
tree T},; we then remove each edge of T,, from the final graph G,, independently with probability

n.

2.4 Related Work

Many researchers in statistics (Kolaczyk; 2009), computer science (Bollobds et al.; 2001), engineer-
ing, and physics (Callaway et al.; 2000) have been interested in the probabilistic properties of various
random growth processes of networks, including the preferential attachment model (Barabdsi and
Albert; 1999). Recently however, the specific problem of root inference on trees has received in-
creased attention.

These efforts began with the ground-breaking work of Bubeck, Devroye and Lugosi (2017);
Bubeck et al. (2015); Bubeck, Eldan, Mossel and Récz (2017), which shows that, given an obser-
vation of an LPA or UA tree of size n, for any € € (0, 1], one can construct asymptotically valid
confidence sets for the root node with size K pa(e) and Ky 4(e) for LPA or UA trees respectively.
Importantly and surprisingly, K1pa(e) and Kya(e) do not depend on n so that the confidence
set have size that is O(1). To construct the confidence sets, Bubeck, Devroye and Lugosi (2017)
computes a centrality value for every node, which can for instance be based on inverse of the size of
the maximum subtree of a node (a concepted sometimes called Jordan centrality on trees, different
from the notion of a Jordan center, which is the node with the minimum farthest distance to the
other nodes); they then sort the nodes by centrality and take the top K(¢) nodes where the size
K (€) is determined by probabilistic bounds.

Khim and Loh (2017) further extends these results to the setting of uniform attachment over
an infinite regular tree. Banerjee and Bhamidi (2020) improves the analysis of Jordan centrality
on trees and derives tight upper and lower bounds on the confidence set size. Devroye and Reddad
(2018); Lugosi et al. (2019) study the more general problem of seed-tree inference instead of root
node inference. The aforementioned results apply only to tree shaped networks but very recently,
Banerjee and Huang (2021) studies confidence sets constructed from the degrees of the nodes which
applies to preferential attachment models in which a fixed m edges are added at every iteration.
After the completion of this paper, Briend et al. (2022) propose confidence sets for the root node
on a class of uniform-attachment-based general Markovian graphs by detecting anchors of double-
cycle subgraphs within the network; they show the confidence set sizes to be O(1) and give explicit
bounds in terms of confidence level e.

A line of work in the physics literature also explores the problem of full or partial recovery
of a tree network history (Young et al.; 2019; Cantwell et al.; 2019; Sreedharan et al.; 2019). In
computer science and engineering, researchers have studied the related problem of estimating the
source of an infection spreading over a background network Shah and Zaman (2011); Fioriti et al.
(2014); Shelke and Attar (2019), with approaches that range from using Jordan centers, eigenvector
centrality, and belief propagation (see survey in Jiang et al. (2016)).

12
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M=CTMh=AMN;=8,..

Figure 7: Label randomization induces a random latent arrival ordering II.

3 Methodology

Our approach to root inference and related problems is to randomize the node labels, which induces
a posterior distribution over the latent ordering.

3.1 Label randomization

Suppose G, is a time labeled graph distributed according to a PAPER model and G}, is the
alphabetically labeled observation where G}, = pG,, for some label bijection p € Bi([n],U,). We
may independently generate a random bijection A € Bi(U,,U,,) and apply it to G, to obtain a
randomly labeled graph
G, = AG; = (Aop) G,.
I

By defining II = A o p, we see that G,, = IIG,, where II is a random bijection drawn uniformly
in Bi([n],U,,) independently of G,, (see Figure 7). We define the randomly labeled latent forest
F, = IIF,. We may view label randomization as an augmentation of the probability space. An
outcome of a PAPER model is a time labeled graph g,, whereas an outcome after label randomization
is a pair (g,,7) where g, is an alphabetically labeled graph and 7 is an ordering of the nodes. We
now make two simple but important observations regarding label randomization.

Our first key observation is that, with respect to G,,, the random labeling IT describes the arrival
time of the nodes in the sense that if II, = u, then the node with alphabetical label u in G,, has
the true arrival time t. Therefore, in the single root setting, we may infer the root node if we can
infer II;; in the multiple roots setting, we may infer the set of root nodes if we can infer I1S.

Our second key observation is that label randomization allows us to define the posterior distri-
bution

a s Pén: Nn II=n
P(IL= 7| G = ga) = Cn=gnll=m) 5
Z‘n"EBi([n],Z/ln) P(Gn =dn | II=mx )

which follows because P(IT = ) = % This posterior distribution is supported on the subset of
bijection 7 such that 7~ !g, has non-zero probability under the PAPER model. In the case of the
single root PAPER or seq-PAPER model, the support of (5) has a simple characterization: for
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G, time labeled graph (unobserved) F, latent time labeled forest
G, observed alpha. labeled graph Fr latent alpha. labeled forest
G, randomly alpha. labeled graph F, latent randomly alpha. labeled forest
p | fixed unobserved ordering; G = pG,, | II latent random ordering; G, =1G,
S time labeled root nodes of G, S | latent alpha. labeled root nodes; S = I1S

Table 1: Quick reference of important notation and definitions.

every time point ¢ € [n], define 71,4 N g, as the subgraph of g,, restricted to nodes in 71.;. Then,
P(Il = 7 | G, = gn) > 0if and only if 1.4 N gy, is connected for all ¢ € [n].

From a Bayesian perspective, label randomization adds a uniform prior distribution on the
arrival ordering of the nodes in the observed alphabetically labeled graph G7;; this is sometimes
used in Bayesian parameter inference on network models (Sheridan et al.; 2012; Bloem-Reddy
et al.; 2018). This prior however is not subjective. Indeed, we will see in Theorem 7 that Bayesian
inference statements in our setting directly have frequentist validity as well and, from Section S2.1,
that the posterior root probability of a node is equal to the likelihood of that node being the root
node up to normalization.

We describe how to compute (5) tractably in Section 4. For computation, we will also be
interested in the posterior probability over both the ordering II as well as the latent forest F,:

P<H:W7ﬁ1:fn|én:gn)- (6)

In the single root setting, fo is actually a tree, which we may write as £,. It is then clear
that (6) is non-zero only if £, is a spanning tree of g, i.e., £, is a connected subtree of g, that
contains all the vertices.

3.2 Confidence set for the single root

To make the idea clear, we first consider the single root model. Since the root node is the node
labeled II; after label randomization, a natural approach is to first construct a level 1 — ¢ Bayesian
credible set for the node II; by using its posterior distribution, which we call the posterior root
distribution.

More concretely, let g, be an alphabetically labeled graph. For each node uw € U,, of g,, we
define the posterior root probability as P(II; = u | én = gn). We sort the nodes ug,...,u, so that

Pl = uy |G =Gn) > Pl = us |Gry = Gn) ... > P} = up | G = Gn),
and define

k ~
Le(gn) = min{kz €[n] : Z]P’(Hl =u; |Gp=gn) >1— 6} (7)

i=1
We then define the e-credible set as
Be(gn) = {u1,u2,...,ur_(g,)} (breaking ties at random). (8)

By definition, B.(g) is the smallest set of nodes with Bayesian coverage at level 1 — € in that
P(I; € Be(gn) | Grn = §n) > 1 —e. In general, credible sets do not have valid frequentist confidence
coverage. However, our next theorem shows that in our setting, the credible set B, is in fact an
honest confidence set in that P{root node € B.(G})} > 1 —e.
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Theorem 7. Let G,, ~ PAPER(«, 3,0) or se¢-PAPER(, 3,0, &, B) and let G, be the alphabetically
labeled observation. Let p € Bi([n],U,) be any label bijection such that pG,, = G}. We have that,
for any € € (0,1),

P{p1 € B.(G})} >1—e

The proof is very similar to that of Crane and Xu (2021, Theorem 1). Since the proof is short,
we provide it here for readers’ convenience.

Proof. We first claim that B(-) is labeling-equivariant (cf. Remark 4) in the sense that for any
T € Bi(U,,U,) and any alphabetically labeled graph g,, we have that 7B¢(g,) 4 B.(7g,) (note

that B.(-) uses randomization to break ties). Indeed, since (I, G,,) £ (t71 o II,77'G,,), we have
that, for any v € U,

PIL =u| Gy = gn) = P(AL = 7(u) | Gy, = 785).

Therefore, for any u, v € U,,, we have that P(II; = u/| G, = gn) > P(Il; =v| G, = g, ) if and only
if P(I1, = 7(u) | Gp = 78,) > P(II; = 7(v) | G,, = 78&,). Since B.(G*) is constructed by taking
the top elements of U,, that maximize the cumulative posterior root probability, the claim follows.

Now, let p € Bi([n],U,,) be such that pG,, = G} and let A be a random bijection drawn
uniformly in Bi(U,,U,) and let IT = A o p. Then,

P(pl € BE(G:L)> = IP)(pl € Be(pGn>)
=P{(Aop)1 € B((Aop)Gy,)|A =1d}
=P{(Aop)1 € B((Aop)Gn)}

=P(I; € B(Gy)) > 1 —¢,

where the penultimate equality follows from the labeling-equivariance of B, and where the last
inequality follows because P(Il; € B.(G,)| Gy = 8n) > 1 — € for any labeled tree g, (with labels
in U,) by the definition of B.. O

Remark 6. We show in Theorem S5 of the appendix that the posterior root probability P(IT; =
u | G, = Jn) is equal to the likelihood of node u being the root node on observing the unlabeled
shape of g,,. Therefore, the set B.(gy) is in fact the maximum likelihood confidence set. Because the
likelihood in this setting is complicated to even write down, we leave all the details to Section S2.1
of the appendix.

Remark 7. One may see from the proof that Theorem 7 applies more broadly then just PAPER
models. It in fact applies to any random graph G,, whose nodes are labeled by {1,2,...,n}. For
the PAPER model, the integer labels encode arrival time and thus contain information about the
graph. In a model where the integer labels are uninformative of the graph connectivity structure,
Theorem 7 is still valid although the posterior probability P(II; = -| G, = gn) would be uniform.
A reviewer of this paper also pointed out that Theorem 7 is related to the classical literature on
invariant/equivariant estimation where credible sets constructed from uniform (Haar) priors may
also be valid confidence sets; see e.g. Schervish (1995, Theorem 6.78).

3.3 Confidence set for multiple roots

First consider the fixed K setting where G,, ~ PAPER(«, 3,6, K); let II be a uniformly random
ordering in Bi([n],U,) and let G,, = IIG,,. The latent set of root nodes of G, in this case is
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S :=T1IS = {II,...,Hk}. We then define the posterior root probability for any node u € U,, as
IP(’U, € ’§|én = gn)a

that is, the probability that node u is an element of the latent root set S.
To form the credible set B¢(g,) C U,, we sort the nodes by the posterior root probabilities

P(us € S|Gp =gn) >Plug € S|Gp=§n) > ... >Pu, € S| Gy = gn). (9)

We may then take B.(g,,) to be the smallest set of nodes such that P(g C B(gn) |G =gn) <e
More precisely, define the integer

Le(gn) = min{k €l : > Plu; €85Gy =gn) < e} (10)
i=k+1
and then define the credible set as
Be(gn) = {u1,uz,...,ur_(5.)} (breaking ties at random). (11)

In the PAPER(«, 3, ag, #) model where the number of roots K is random, the set of root nodes
is S = IIS which comprises, according to the ordering II, of the node that is first to arrive in each
of the component trees of F,,. We may then sort the nodes as in (9), compute L.(g,) as in (10)
and B.(g,) as in (11).

Similar to Theorem 7, we may show that B.(-) in fact also has frequentist coverage at the same
level 1 —e.

Theorem 8. Let G,, ~ PAPER(a, 8, K,0) or PAPER(«, 8, ag,0) and let G, be the alphabetically
labeled observation. Let p € Bi([n],Uy,) be any label bijection such that pG.,, = G and let S C [n]
be the time labels of the root nodes (see Definitions / and 5). We have that, for any e € (0, 1),

P{pS C B(G})} >1—ce

Proof. The proof is very similar to that of Theorem 7. First, since the random set S is a function
of the random ordering IT in the fixed K setting and a function of both the random ordering IT and
the random forest F,,, we write S(IT) or S(II, F,) to be precise.

We then observe that S(IT) in the fixed K setting or S(II, F},) in the random K setting, are
labeling equivariant in that for any 7 € Bi(Uy,,U,), we have that S(r—'II) = 7—'S(II) or, in the
random K setting, S(r—'II,7~'F,) = 7 1S(II, F,). Therefore, since (I, G,) < (r—'II,77'G,,)
for any 7 € Bi(Uy,U,), we have S'(H,l*:‘n) 4 T_IS(H, Fn) and thus, for any u € U,,,

P(ue S|Gn=gn) =P(r(v) € S| Gy = 7).
The rest the proof proceeds in an identical manner to that of Theorem 7. O

When there are multiple roots, an alternative way of inferring the root set is to construct the
confidence set B.(-) as a set of subsets of the nodes and then require that S € B, with probability
at least 1 — e. We can take the same approach to construct such confidence set over sets but it
becomes much more computationally intensive to compute them in practice.
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hist(i,,): hist(A,t,) hist(B,t,) hist(C,t,)  hist(D,t,)

o ABCD BACD CBAD DBAC
ABDC BADC CBDA DBCA
Q e Q BCDA
BCAD
BDAC
BDCA

Figure 8: All histories of a tree with 4 nodes.

3.4 Combinatorial interpretation

Before we describe the Gibbs sampling algorithm for computing the posterior root probabilities
P(II; = u] G, = Jn), we provide an intuitive combinatorial interpretation of the posterior root
probability in the single root PAPER model (Definition 2). The definitions and calculations here
are also important for deriving the algorithm in Section 4.

The noiseless case: We first consider the simpler setting in which we can observe the tree T},
(with a single root) distributed according to the APA model. In this case, we have

P =T, =t,) = » PI=nx|T,=t,).

T M =u

Recall that T,, = IIT,, where T, is a random time labeled tree with APA(a, ) distribution and
IT is an independent uniformly random ordering in Bi([n],U,,). The distribution P(II = 7 | T}, = £,)
is supported on a subset of the the bijections Bi([n],,,) because 7~ 1T,, must be a valid time labeled
tree (also called recursive tree in discrete mathematics). To be precise, we define the histories of £,
as

hist(¢,,) := {7 € Bi([n],Up) : P(T,, =7~ 't,) >0}, and
h(t,) := |hist(£,)]

as the number of distinct histories. Since the APA tree distribution assigns a non-zero probability
to any valid time labeled trees, we see that hist(%,) contains the elements 7 of Bi([n],U,,) such that
for all ¢ € [n], the subtree restricted only to nodes in 7y.¢, i.e. £, Nmy., is connected. Thus, hist(,)
is the set of bijections 7 which represent a valid arrival ordering for the nodes of the given tree .

Similarly, we define, for any node u € U,

hist(u, t,) := {7 € hist(¢,) : ™ = u}
h(u,t,) := |hist(u, t,)],

as histories of £, that start at node u. We illustrate an example of the set of histories for a simple
tree in Figure 8.

By definition, P(II = |Tn = t,) is supported on hist(t,). For most values of a and 3, the
posterior distribution is in fact uniform over hist(£,):

Proposition 9. (Crane and Xu; 2021, Theorem 4 and Proposition 3) Let «, 8 be two real numbers
such that either (1) 8 > 0 and a > —f or (2) f < 0 and o = —Dp for some integer D > 2.
Suppose T,, ~ APA(«a, B). Let I be a uniformly random ordering taking value in Bi([n],U,) and let
T, = IT,. Then,

Pl =7 |T, =t,) = h(;)lh € hist(t,)}. (12)
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Figure 9: Same tree t, in three rooted orientations. Left: tNSLE) rooted at FE; the subtree of A

(denoted fff)) contains nodes A, F, G; node A is the parent of F,G. Center: fng) rooted at B; the
subtree of A (denoted f(AB) contains nodes A, F, G; node A is the parent of F, G. Right: £ rooted
at G the subtree of A (denoted f(AG)) contains nodes A, B, E,C, D; node A is the parent of B.

The full proof of Proposition 9 is in Crane and Xu (2021) but we give a short justification here:
P(Tp,=t, |U=m)L  P(T,=r"',)4
P(Tn=t,) T P(Ta=tn)
the probability P(T;, = 7~ 1t,,) is actually the same for any 7 € hist(¢,) by Proposition S1.

the posterior is uniform because P(Il = 7 | T}, = &,) = . Moreover,

By Proposition 9, we have that

P(IT, = u| Ty = £,) = hf(;gtt;)

Therefore, we need only count the histories h(u,t,) for every node u € U,. We give a well-
known characterization of h(u,t,) that leads to a linear time algorithm for counting the size of
the histories: define, for any node u,v € U,,, the tree tZS“) as the subtree of node v where we view
the whole tree as being rooted (hanging from) node w; f&u) is thus the entire tree rooted at u. See

Figure 9 for an example. We then have that, by Knuth (1997) or Shah and Zaman (2011),

~ 1
h(u,t,) = n! H = On (13)
vEU, ‘tU |

Therefore, we can compute h(u,t,) by viewing £, as being rooted at u and taking the product of
the inverse of the sizes of all the subtrees. By using the fact that h(u, fn) can be directly computed
from h(u',t,) for any neighbor u’ of u, Shah and Zaman (2011) derive an O(n) algorithm for com-
puting the size of the histories over all roots {h(u,t,)}ucu,, which we give in Section S2 of the
appendix for readers’ convenience.

The general case: Now suppose we have the label randomized graph G, from the PAPER
model. We then have that

P(H1:u|én:gn): Z Z P(H:ﬂ'v ~n:t?n|c~:n:gn)

t, Cgn mEhist(u,ty)

x > > PA=mT,=t)P(Gn=gn|T,=t,I=m).
t, Cgn mEhist(u,t,) (n<7L;117){',21:<17)L71))71

x Y Y PT=t|O=m)=> > PT,=r'%), (14
£, Cgn mEhist(u,ty,) tC gy, m€hist(u,t)

where, in the outer summation, we require £, to be a subtree of §, with n nodes, that is, we
require £, to be a spanning tree of g, (see (16)). If T}, has the uniform attachment distribution
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Figure 10: One possible growth realization starting from node B.

(a =1, = 0), then we have that P(T},, = 7', = ﬁ by Proposition S1 and hence,

Thus, the posterior root probability of u is simply proportional to the number of all possible
realizations of growth process that start from node u and end up with graph g,; see Figure 10.
When T, has the LPA distribution (o = 0,3 = 1), then P(T,, = 7~ '%,) depends on the degree
sequence of the tree £, so that the posterior root probability is proportional to a weighted count of
all possible growth realizations.

4 Algorithm

The inference approach that we described in Sections 3.2 and 3.3 requires computing posterior
probabilities such as the posterior root probability P(II; = u | G, = gn) for a fixed alphabetically
labeled graph g,. In this section, we derive a Gibbs sampling algorithm to generate an ordering
7 € Bi([n],U,) and a forest f,, according to the posterior probability

As discussed towards the end of Section 3.1, in the single root setting, the posterior probabil-
ity (15) over II, F,, is non-zero only if f, is a spanning tree of the graph g,,. We formally define the
set of spanning trees of a connected graph g, as

T(gn) = {fn . fn is connected subtree of g, and V(f,) = V(gn)}- (16)

We note that 7(g,) is non-empty if and only if g,, is connected. For the multiple roots setting,
we define the spanning forest of g,, with K components as

Fr(gn) = { fn : fn is sub-forest of g, with K disjoint component trees and V(f,) = Vi(gn)}

so that F1(gn) = T(gn). Then, for the fixed K roots model, the posterior probability (15) is
non-zero only if f,, € Fk(g,) and for the random K roots model, probability (15) is non-zero only
if f, € ]:(gn) = U?{:pFK(gn)-
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The value of the posterior probability (15) depends on the parameters of the model, e.g. «, 3,0
in the single root setting. We provide an estimation procedure for these parameters in Section S3.1
but for now, to keep the presentation simple, we assume that all parameters are known.

Our Gibbs sampler alternates between two stages:

(A) We fix the forest f,, and generate an ordering = with probability P(IT = 7 | Gy, = gn, F\ = fn).

(B) We fix the ordering 7 and generate a new forest fn by iteratively sampling a new parent for
each of the nodes.

We give the details for stage A in the next section and for stage B in Section 4.2.

Remark 8. In Section S3.3, we give an alternative collapsed Gibbs sampling algorithm in which we
collapse stage (A) so that we only sample the roots instead of the whole history 7. The collapsed
Gibbs sampler requires fewer iterations to converge but each iteration is more computationally
intensive. Practically, the sampling algorithm that we present in Section 4.1 and 4.2 appears to be
faster except for the random K roots model on some data sets.

4.1 Sampling the ordering

In this section, we provide an algorithm for the first stage of the Gibbs sampler where we sample an
ordering. We fix a spanning forest f,, of the observed graph g,,, let K be the number of component
trees of f,, and let m = |E(g,)| be the number of edges of g,,. We have that

Pl =7 |Gy =gn, Fp = fn) x P =7 |F, = f)P(Gn = Gn | F, = fo, I =7). (17

Under the non-sequential noise PAPER models, since the non-forest edges of G,, are independent

Erdés-Rényi random edges, we have P(G,, = g, | F,, = fn, 1 =7) = ((E@)—_(S:L—_If))) and may thus
ignore the non-forest edges and consider only on the posterior probability P(IT = | F, = f'n) when
sampling 7. In the sequential noise seq-PAPER model, the P(G,, = g, | F,, = fn,II = 7) term
must be taken into account but can be computed efficiently. We give the detailed algorithms for

each of the settings.

Single root setting: In the single root setting, fn is connected and hence a tree; we thus change
to the notation &, := fn to be consistent with the notation used in Definition 1.

Hence, by our discussion in Section 3.4, sampling 7 according to P(II = - | T}, = t,,) is equivalent
to sampling 7 uniformly from hist(#,). Crane and Xu (2021) and also Cantwell et al. (2021) derive a
procedure to sample uniformly from hist(fn) and we provide a concise description of the procedure
here for the readers’ convenience.

To generate 7 uniformly from hist(£,), we generate the first node 71 by taking the set of all
nodes and drawing a node u with probability

h(u,t,)
h(tn)

The entire collection {h(u,,)}ucy, can be computed in O(n) time (c.f. Section 3.4 and S2) and

Pl = u|T, =1t,) = (18)

thus we require at most O(n) time to generate the first node .
To generate the subsequent ordering ms.,,, we view the tree t, as being rooted at m; and use the

) make the root explicit. For each node v € U,,, we define t~1(,7r1) as the subtree of the

notation Eﬁf !
node v, viewing the whole tree as being rooted at node 7. We give an example of these definitions

in Figure 9.
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Figure 11: Example of sampling an ordering. In both cases, suppose 71.3 = {B, C, D}, then draw
74 from the neighbors {F, A, E, G} with probability proportional to the size of their subtrees.

Then, by Crane and Xu (Proposition 9 2021), for every ¢ € [n — 1],

_ B "
P(Ily = v | Ty = i T, = ) = P if v is a neighbor of 7. in ¢, (19)
0 else
One may verify this by showing that the probability of generating a particular ordering is % IL, cu, |t~£l“) | =
7}1(;,5”,) by (13).

Thus, we may generate m by considering all neighbors of 7 in £, and drawing a node v with
probability proportional to the size of its subtree \55,"1)| and similar for w3, w4, etc. The entire
sampling process can be efficiently done by generating a permutation uniformly at random and
modifying it in place so that it obeys the hist(f,) constraint. We summarize this in Algorithm 1
with K =1 and also give a visual illustration in Figure 11. The runtime of the sampling algorithm
is upper bounded by O(ndiam(t,)) (Crane and Xu; 2021, Proposition 10). Trees generated by
the APA(a, 5) model have diameter Op(logn) (see e.g. Drmota (2009, Theorem 6.32) and Bhamidi
(2007, Theorem 18)) and the overall runtime is therefore O(nlogn). The computational complexity
is the same under the fixed K setting and the random K setting.

Fixed K roots setting: For the PAPER(«, 8, K, 0) model, we may generate from P(II = - | F, =
fn) in a similar way. In this case, f, is a forest that contains K disjoint component trees, which
we denote by t',... t¥. We first generate a root for each component tree. For each k € [K], we

draw u”* € V(t*) with probability

h(u®, £)(BDg: (u") + 8 + a)(BDge (v*) + )
Y vev (@) (v, ) (BDg (v) + B + @) (BDp. (v) + @)

(20)

We note that (20) is different from the corresponding probability in the single tree setting (18)
because we give each root node an imaginary self-loop edge. We leave the detailed derivation
of (20) to Section S3.2 of the appendix.

We let 5 = {u',...,u”*} denote the set of roots that we have generated. By the definition of
the PAPER(«, 8, K, 0) model (Definition 4), the root nodes § occupy the first K positions of the
ordering m and we thus let 71.x be the elements of § placed in a random ordering.

Next, we view each component tree t* as being rooted at uj, and, for every node v € V( fn),

)

we denote the subtree of node v by t~£,§ . We then generate m(x 1., according to probability (19)

)l_

the root node) for every tree and then interleaving them at random. We again summarize the whole

where we use the size of the subtree \EEf This is equivalent to generating a full history (excluding
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procedure in Algorithm 1.

Random K roots setting: Now consider the random K roots setting with the PAPER(«, 8, «g, 0)
model and suppose f,, comprises of K disjoint trees t', ..., t%. We again generate the set of roots
5= {u',...,u} by drawing u* from ¥ with probability (20). In contrast with the fixed K roots

K need not occupy the first K positions of the ordering 7.

setting, the root nodes u', ..., u
To generate the ordering 7, we first choose u* € § with probability |t*| and set 7 = u*. We

then draw ., iteratively using the conditional distribution

. . [£39)] o . I . ~
P(Iyy = 0| B = f, T = 1) = { n_6+1 if v is a neighbor oflﬂ'l:t in f, orifves (21)
else

We note that for a root node u* € 3, the subtree fii) is precisely the whole tree t*. We summarize

this procedure in Algorithm 1.

Sequential noise setting: Under the seq-PAPER model described in Section 2.3, we no longer
have a direct sampling algorithm to draw from P(II = - | Gn=gn, T, = t,,) because we have to take
into account the P(én =gn| T, =t, I = 7) term in (17). For seq-PAPER models, we propose
instead a Metropolis—Hastings algorithm to update 7w by sampling new transpositions.

Let m be the current sample of arrival ordering. To generate a new proposal 7*, we randomly
choose a pair j,k € {2,...,n} and construct 7* by swapping the j-th and the k-th entries of m,
that is, 77 = m, and 7} = m; and all other entries are equal. If 7* ¢ hist(£,,), then we reject the

J
proposal; otherwise, we accept it with probability

P(G

n
n

= Nn II= *7Tn = En
gN | ™ ~ _ )7 (22)
PG, =g, |0U=mT,=t,)

which follows because P(Il = 7 |T, = t,) = P(II = «*|T, = t,). The ratio in (22) has a
complicated expression but can be computed in time proportional to only the degrees, with respect

1A

to Gn, of m;, Tk, and the parent nodes pa(w;), pa(my), where the notion of parent node is defined
in (23). We give a detailed description of how to efficiently compute (22) and determine whether
7* € hist(t,) in Section S3.5 of the Appendix; in particular, see Section S3.5.2 which uses results
from Section S3.5.1. Even with our efficient implementation however, updating © by sampling
transpositions is considerably slower than sampling 7 directly via (19).

The transposition sampler does not change the root node since j, k are not allowed to take on
the value 1. To sample a new root node, we fix kg € N and generate a new proposal 7* by shuffling
the first ko entries of 7. We then accept 7* if it is a valid history and with probability (22). Finally,
we note that under the seq-PAPER" model with tree edge removal, our method for sampling 7 is
exactly the same. Since we condition on T}, it makes no difference whether we have deletion noise
or not.

Remark 9. Sheridan et al. (2012) and Bloem-Reddy et al. (2018) use the idea of swapping adjacent
elements of an ordering 7 for a Poisson growth attachment models and a sequential edge-growth
model referred to as Beta NTL respectively. In contrast, under the seq-PAPER model, we can
compute non-adjacent swap proposal probabilities efficiently and hence, we can explore the permu-
tation space of m faster. This is because the seq-PAPER is a simpler model and also because we
restrict ourselves to a spanning tree, which simplifies many parts of the calculations. We note that
sampling 7w through non-adjacent pair swaps can also be used for the model G,, = T}, + R,, where
T,, is not shape-exchangeable, for instance when the attachment probability is ¢(Dr,_, (w:)) for
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some non-affine function ¢(-) instead of the affine expression given in (1). Finally, We emphasize
that inference for the vanilla PAPER model is significantly faster than any form of swapping-based
Metropolis samplers since it directly samples the entire ordering.

Algorithm 1 Generating 7 € hist(f,) according to P(IT = 7 | F,, = £,) in ER noise settings.
Input: Labeled forest fn with K trees, denoted ¢!, ... t¥.
Output: 7 € hist(f,).

1: for k=1,2,..., K do:

2. Choose node u* € V() with probability (18) with PAPER(«, 3,6) model and with prob-

ability (20) under PAPER(«, 8, K, 0) or PAPER(«, 3, ag, 6).
3: end for
4: Let 5 = {u',u?,...,u®} be the set of roots, and

e under PAPER(«, 3,0), let 71 = u! and let o = 2,
e under PAPER(a, 8, K, 0), let m1.x = § in a random ordering and let tg = K + 1.
e under PAPER(q, 3, o, #), choose u* € § with probability [£*|/n, let m; = u¥, let to = 2.

5. Generate 7., as a uniformly random permutation of Un\ﬂl:(to_l).
6: for t =tg,t9+1,...,n do:
Let v; = m, va = pa(v1), ...,vx = pa(vg—1) where k is the largest integer such that
V1, V2,0, Uk & T(i—1)- > pa(v) denotes the parent of v with respect to £, rooted at .
Set m; = vy, tr, = 7 1 (vy), and 7, = v1.
9: end for

4.2 Sampling the forest

In this section, we describe stage B of the Gibbs sampling algorithm. For a fixed ordering 7 and a
spanning forest f,,, we may obtain a set of roots 3 for each of the component trees of f,, by taking
the earliest node (according to 7) of each tree. Viewing £, as being rooted at § induces parent-child
relationships between all the nodes.

To define the parent-child relationship formally, let fn be a forest with disjoint component trees
t',... % and let § = {u',u?, ...,u"} be a set of root nodes such that u* € V(£*). Let u be
any node not in § and suppose u € V(*). There exists a unique node v € V(£*) such that v is a
neighbor of u in fn and that the unique path from u to the root u* contains v. We say v the parent
node of u and write

pa(u) = Pa (u) = parent of u with respect to £, (23)

For a root node u € 3, we let pa(u) := @) for convenience. Since every edge in fn is between a node

and its parent, the set of parents {pa(u)} specifies the n — K edges in fn and hence uniquely

uEU,
specifies the forest fn and the root nodes §.

Our Gibbs sampler updates the forest fn by iteratively updating the parent of each of the nodes,
which adds and removes a single edge from fn (it is possible to add and remove the same edge so
that the forest does not change) or, in the random K setting, we may remove a single edge and add
a new root node or remove a root node and add a single edge.

To be precise, the latent tree F, and root set S induces a latent parent of each node which
we denote pa e (). For every node u, we generate a new parent u’ according to the conditional
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distribution

Quu') = P(paﬂgg) (w)=u |l =7,Gp = gn, {paﬁbg) (v) = pa g (v)}v;ﬁu), (24)
and then replace the old edge (u,pa(u)) with (u,u’). Since we condition on the arrival ordering II,
probability (24) is non-zero only when ’ arrives prior to u, i.e. 7=t/ < 77 tu, and (u,u’) € E(gn).
In other words, if 7#=tu = ¢, then @, (-) is supported on the set of nodes T1.(¢—1) N Ng, (u). In the
random K setting, u’ is allowed to be empty in which case Qy(+) is supported on {0} U (my.¢;—1) N
Ny, (u)) where Ng(u) is the set of neighbors of u on the graph g,,. Our sampling procedure then
generate the parents for my, mo, 73, . .. sequentially. In Figure 12, we illustrate how we may generate
a new parent for 75 (node C) by choosing one of the edges that connects 75 with one of the earlier
nodes m1.4.

1 ) 73 T4 Ty

Figure 12: Sampling a parent for 75 (node C).

At iteration t, to compute Q, (-) with respect to 7, for each node v in the support of @, (+), we
let fn £(™) denote the forest formed by removing the old edge (pa(m), m;) and addlng the new edge
(v, 7). We note that v is allowed to be the old parent so that we may have fn = fnv ) Then, for
any w; in the support of Qr, (), we have

P(F, = £1“*™) |l = 7, Gy = §n)

Qr, (wy) = — .
( t) Z,UP<Fn:'fnvﬂt)|H:7T,Gn:gn)

(25)

In the PAPER models with Erdés—Rényi edges, We can compute the conditional distribution
P(F, = -|II = n,G, = §,) by using the fact that once when we condition on F, = f,, the
remaining edges of G,, are uniformly random and the fact that IT and F, are independent. Thus,

P(Fn:fn|nzﬂ’é _~)
O(P(én=§n|ﬁ1 ,f'n,7 =7)P (Fn:fn‘H:ﬂ—)
L R R X )
_<m( - (fn») B(F, = 7~ £,)1{f, € F(g.)}

K(fn)
{ 1l e i+7;+’“)}P(Fn — 7 )L € Flgn). (26)

We now discuss the sampling procedure in detail in all the settings.
Single root setting: In the single root setting, we again use the notation ¢,, = fn to be consistent

with Definition 1. The first term of (26) is a constant since K(%,) = 1 and may thus be ignored.
Using the likelihood of APA trees (see Remark 2 as well as Proposition S1 from the Appendix)
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and using the fact that P(T;,, = 7~ '¢,) > 0 when 7 € hist(¢,), we have that, for any w; €
T1.¢—1) N Ng,, (7¢),

n

ﬂD{%‘m)(wt) +«
ZUET"l:(t_UﬁNgn (m¢) /Bngl"ﬂ't) ('U) =+ Oé’

QTH (wt) =

where £ is the disconnected graph obtained by removing the old edge (pa(m), m¢) from £,. We

summarize the resulting procedure in Algorithm 2. Since we visit every node once and, for a single
node u, it takes time O(Dg, (u)) to generate a new parent, the overall runtime of the second stage
of the algorithm is O(m). The computational complexity is the same under the fixed K setting and
the random K setting.

Fixed K > 1 setting: Since the number of trees K is fixed, the first term of (26) is again a
constant. Using likelihood of APA trees again (see Proposition S2 from the Appendix), we have
that for any w; € my.;—1) N Ng,, (7¢),

BD peme) (wi) + 261wy € Mk} +

s w = ’
Q. (1) Zma:(tA)ﬂNgn(Wt) 'BDﬁ(L"”) (v) +261{v € Mk} + o

where, as with the single root setting, f}(,"’m‘) is the forest obtained by removing the old edge
(pa(m;),m) from f,. The only difference from the single root setting is that we have a higher
probability to attach to a root node because of the imaginary self-loop edge. We summarize the
procedure in Algorithm 2.

Algorithm 2 Generating spanning forest fn of g, under either PAPER(«q,f,0) or
PAPER(«, 8, K, 0)
Input: Graph g, ordering 7 € Bi([n],U,,), and a spanning forest f, with K component trees.
Effect: Modifies f,, in place.

1: fort=K+1,...,n do:

2: Remove old edge (7, pa(m;)) from f. to obtain fy(,"ﬂ").

3: Choose a node w; € 71.;—1) N Ng, () with probability proportional to

5Df<«nrz) (w) + under PAPER(«, 3, 0)
BD g.mo (w) 4+ 201{w € m1.x} + @ under PAPER(«, 3, K, 0)

4: Add new edge (7, wy) to fo.
5. end for

Random K roots setting: Under the PAPER(«, 8, g, 6) model, a node may become a new
root in the sampling process and thus we must take into account the first term of (26). Moreover,
in this setting, Qn,(-) for node m; is supported on {0} U (m.;—1) N Ny, (m)) since we may turn
the node m; into a new root node, in which case we set its parent to () by convention. Define

G = Qg n(nTl_);gtIfo}{{:ﬁi];gg}; we then have that, by Proposition S3, for any w; € {@}U (7T1:(t—1) N
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Ngn (7Tt)),

Qr, (1) = % iy — 0
" t ONéo + ZUETH:(t—l)ﬁNén () Bwa({'wt) (U) T 26]1{’0 € 5} To t
BD s (wy) + 261{w, € S} +
and Qr, (w;) = S : if w; # 0,

o + Eveﬂ'l:(t—l)mNgn () Bfo;'”) (v) +201{v € 5} + «

where, if 7; is not a root node, fﬁ"m) is the forest obtained by removing the old edge (¢, pa(m))
and if 7; is a root node, then fr({’m) = fn. We summarize the resulting procedure in Algorithm 3.

Algorithm 3 Generating spanning forest f,, of g, under PAPER(a, 3, ag, 0)

Input: Graph g, ordering 7 € Bi([n],U,,), and a spanning forest f,.
Effect: Modifies f,, in place.
1: Let 5 be the set of root nodes.
2: fort=2,3,...,ndo:
3: ( If)m ¢ 5, remove edge (m, pa(m)) from f, to get fm) . Else, let § = S\{w} and let
o = fa.

4: Choose a node w; € {0} U (my.;—1) N Ng,, (7)) with probability proportional to

o for w; =0
BDﬁ(L.,m(wt) +281{w; €5} +a for wy #0

If w;, # 0, let f, = fy(b"m) U (¢, we). Otherwise, let § = §U {m;} and fn = ~7(L"m).
6: end for

o

Sequential noise setting: Under the seq-PAPER setting, we use the same sampling procedure but
the sampling probabilities become more complicated. From (25), we see that, for w € Ng, N71.4—1),

Qr, (W) x P(T, = fgf”’”‘) [T =, Gn=an)
< P(Gp = Gn | T, = £ 11 = 1) P(T, = &™) |11 = 7).

noise term

Under the seq-PAPER model, the noise term also depends on w since choosing a new parent for
7 would change the tree degrees of some of the nodes. Naively computing @, (w) takes time
O(n), but in Section S3.5.3 of the Appendix (using results from Section S3.5.1), we give a detailed
algorithm to compute @, (w) in time O(Dg, (w)) so that overall, we can sample a new parent for
7 in time proportional to the number of neighbors of neighbors of ;.

When we have deletion noise, as the case of the seq-PAPER* model, the latent tree T!, need not
be a subgraph of G,, and hence, when sampling a new parent for 7y, we must consider all of 7y.;_1)
and not just graph neighbors of m;. Thus, we draw w € my.;—1) with probability Qr,(w) and set
pa(m;) = w. We give the detailed algorithm for computing Q, (w) in Section S3.5.3 of the Appendix.

4.3 Other aspects of the algorithm

Parameter estimation: To estimate o and 3, we derive an EM algorithm in Section S3.1 of the

Appendix. The noise level 6§ is easy to estimate via 6= % in the single root setting.
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The inference algorithm in fact does not require knowledge of # since it conditions on the number of
edges m of the observed graph. We discuss some ways to select the number of trees K in the fixed K
root setting and ways to estimate g in the random K roots setting in Section S3.4 of the Appendix.

Inference from posterior samples: The Gibbs sampler described in Section 4.1 and Section 4.2

generates a Monte Carlo sequence { (70, ﬁ(f )) 37:1 where J is the number of Monte Carlo samples.
A straightforward way to approximate the posterior root probability is to use the empirical distri-
bution based on all the 7(/)’s. However, we can construct a much more accurate approximation by
taking advantage of the fact that the posterior root probability is easy to compute on a tree.
Consider the single root setting for simplicity where the posterior root probability is P(II; =
u | G, = gn) for any node u. In this case, we may compute distributions QM, Q®, ... Q) over

the nodes by

) 5 . _ . h .E(])
QW) = B(IT, = u| Ty = £9), G = §) = P = u| T = £9) = (“7(7;)
h(t”)

Then, we output %Z;}ZI Q(j) as our approximation of the posterior root distribution. In the
multiple roots setting, we use the same procedure except that we compute u — P(u € S | F, = ﬁ(lj))
and then average across j € {1,2,...,J}.

In the multiple roots setting, each Monte Carlo sample of the forest fy(f ) contain either K
disjoint trees in the fixed K setting or a random number of disjoint trees in the random K setting.
These disjoint trees provide a posterior sample of the communities on the network and using them,
we may estimate the community structure of the network. We provide details on one way of using
posterior samples for community recovery in Section 6.3 and 6.4.

The Gibbs sampling algorithm scales to large networks. We are able to run it on networks of
up to a million nodes (c.f. Section 6.2.2) on a single 2020 MacBook Pro laptop. To give a rough
sense of the runtime, it takes about 1 second to perform one outer loop of the Gibbs sampler on a
graph of 10,000 nodes and 20,000 edges. In Section S3.4 of the appendix, we provide more details
on practical usage of the Gibbs sampler such as convergence criterion.

Initialization: In the single root setting, to initialize the Gibbs sampling algorithm, we recommend
generating the initial tree #, uniformly at random from the set of spanning trees 7(g,) of the
observed graph, which can be efficiently done via elegant random-walk-based algorithms such as
the Aldous—Broder algorithm (Broder; 1989; Aldous; 1990) or Wilson’s algorithm (Wilson; 1996).
We then initialize 7 by drawing an ordering uniformly from the history of the initial tree. This
initialization distribution is guaranteed to be overdispersed and works very well in practice. The
same initialization works for the random K setting. For the fixed K setting, we can form the initial
forest by constructing uniformly random spanning tree ¢, and uniformly random ordering 7 as
usual, taking the first K nodes of the 7 as the root nodes, and removing all tree edges between
them to obtain an initial f,. We use Wilson’s algorithm in our implementation.

5 Theoretical Analysis

We provide theoretical support for our approach by deriving bounds on the size of our proposed
confidence sets when the observed graph has the PAPER distribution. In particular, we aim to
quantify how the quality of inference deterioriates with the noise level 6, that is, how the size of the
confidence set increases with 6. For simplicity, for consider only the single root setting and we do
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not take into account approximation errors introduced by the Gibbs sampler, that is, we analyze
the confidence set constructed from the exact posterior root probabilities.

We begin with a type of optimality statement which shows that the size of the confidence set
B.(+), as defined in (8), is of no larger order than any other asymptotically valid confidence set.
Intuitively, this is because B.(-) can be interpreted as a “Bayes estimator” for the root node.

Lemma 10. Let € be in (0,1), let G, ~ PAPER(«,f3,0), and let GX = pG, be the observed
alphabetically labeled graph for some p € Bi([n],U,). Let B.(G2) be defined as in (7) and (8). Fix
any § € (0,1) and let Csc(GL) be any confidence set for the root node that is labeling-equivariant
and has asymptotic coverage level 1 —de, that is, limsup,, . P(p1 ¢ Csc(G)) < de. Then, we have
that

limsupP(|B.(G})| > [Csc(Gyr)|) < 6.

n—o0

We provide the proof of Lemma 10 in Section S4 of the appendix.

Ideally, we would compare the size of B(-) with C.(-) at the same level. It is however much
easier to compare with the more conservative Cs (). In many cases, the size of a confidence set
|C.(+)| has bounds of the form f(n)g(e~!) for some functions f and g (see e.g. Banerjee and Bhamidi
(2020)) so that comparing with Csc(-) adds only a multiplicative constant to the bound.

Lemma 10 is useful because it is difficult to directly bound the confidence set B.(-) as a function
of n and the parameters; Lemma 10 shows that we can indirectly upper bound it by analyzing a
simpler asymptotically valid confidence set. Our strategy then is to construct confidence sets based
on the degree of the nodes whose size is much easier to bound through well-understood probabilistic
properties of preferential attachment trees. This leads to our next result which provides explicit
bounds on the size of the confidence set Bc(-) when the underlying tree is LPA.

Theorem 11. Let G,, ~ PAPER(«, 3,0) for =1, a =0, and 0 € [0,1]. Fort € [n], let Dg, (t)
be the degree of node with arrival time t and for k € [n], let k-max(Dg, ) be the k-th largest degree
of Gy. Let 6 > 0 be arbitrary and suppose 0 < n=279, Then, for any € > 0, there exists L, € N
(dependent on 6 but not on n) such that

limsupP{Dg, (1) < Le-max(Dg,)} <. (27)

n—oo
As a direct consequence, if 0 = O(n’%"s) for any 6 > 0, then, for any € € (0,1),
|Be(G7)| = Op(1).

We relegate the proof of Theorem 11 in Section S4.1 of the appendix and provide a short sketch
here: we use results from Pekoz et al. (2014) which show that the degree sequence of an LPA tree,
when normalized by %7 converges to a limiting distribution in the ¢, sequential metric sense, which
shows that (27) holds for the tree degree Dt (), that is, the degree of the root node is one of the
highest among all the nodes. Since Dg,, = Dr, + Dg,, , we show that if the noise level 6 is less than
n~1/27% for some & > 0, then the degree of the noisy edges Dg, has a second order effect and (27)
remains valid.

We know from existing results (such as Bubeck, Devroye and Lugosi (2017, Theorem 6); see
also Crane and Xu (2021, Corollary 7)) that |Be(T,)| is Op(1) in the 8 = 0 case where we observe
the LPA tree T,'. Theorem 11 shows that this phenomenon is quite robust to noise. Indeed, when

0 = n~1/2-% the observed graph would have approximately n3/2—?

noisy edges and only n — 1 tree
edges.
The situation is different when the underlying latent tree has the UA distribution, where o = 1

and 8 = 0. In this case, we have the following result:
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Theorem 12. Let G,, ~ PAPER(«,3,0) for o = 1, B = 0, and 8 € [0,1]. For t € [n], let
Dg, (t) be the degree of node with arrival time t and for k € [n], let k- max(Dg,,) be the k-th largest
degree of G,,. Suppose § = 0(10%) and let € € (0,1) be arbitrary. For any n € (0,1), define

Lyne:=n" +6_1n1_(2_")h(ﬁ) where h(zx) = (1+x)log(1+x) —x for x > 0. Then, we have that

lim sup P{DG"(I) < Lype- max(DGn)} <e. (28)

n— oo

logn
n

As a direct consequence, if 0 = o( ), then, for some v < 0.8, we have that

n" Ve ' B(GL)| = O,(1)  for any e € (0,1).

We relegate the proof of Theorem 12 to Section S4.2 of the appendix. The proof technique is
similar to that of Theorem 11 except that we use concentration inequalities to derive (28).

Comparing Theorem 12 with Theorem 11, we see two important differences. First, even if the
noise level is small, we can no longer guarantee that |B.(G})| is bounded even as n increases.
Instead, we have the much weaker bound that |B.(G?},)| is less than O(n?) for some v < 0.8. We
believe this bound is not tight; we observe from simulations in Section 6.1 (see Figure 13) that the
size of the confidence set B.(-) is indeed O,(1) even when the noise level is of order 10%. The
bound is sub-optimal because the degree of the nodes is not informative of their latent ordering
when the latent tree has the UA distribution; hence, B¢(-) could be much smaller than confidence
sets constructed solely from degree information. Intuitively, this is because largest degree nodes
do not persist in uniform attachment as opposed to linear preferential attachment (Dereich and
Morters; 2009; Galashin; 2013).

The second difference is that the noise tolerance is much smaller. We require 6 to be smaller
than 10% rather than n~=1/2. We conjecture that these rates are tight in the following sense:

Conjecture 13. Let G,, ~ PAPER(a,f3,0) fora=1, 3=0, and 6 € [0,1].

1. Suppose a = 0 and f =1 (LPA). If § = o(n='/2), then |B.(G%)| = O,(1) and if = w(n=/2),
then every asymptotically valid confidence set has size that diverges with n.

2. Suppose o =1 and B =0 (UA). If § = o(225™), then |B.(G%)| = O,(1) and if § = w(lc’%),

n
then every asymptotically valid confidence set has size that diverges with n.

We provide empirical support for this conjecture in Section 6.1, particularly Figure 13. In those
experiments, we see that, when the latent tree has the LPA distribution and when 6 = c¢n=1/2
where ¢ > 0 is small, the size of B, does not increase with n; however, when ¢ (and hence ) is
large, B, is larger when the size of the graph n is larger. The same phenomenon holds when the

latent tree has the UA distribution when 0 = cloin.

6 Empirical Studies

We have implemented the inference approach in Section 3 and the sampling algorithm in Sec-
tion 4 in a Python package named paper-network, which can be installed via command line pip
install paper-network on the terminal and then imported in Python via import PAPER. The
source code of the package, along with examples and documentation, are available at the website
https://github.com/nineisprime/PAPER. All the code used in this Section are also available there
under the directory paperexp. We also give detailed sampler diagnostics information in Section S5.4
of the Appendix.
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6.1 Simulation

Frequentist coverage in the single root setting: In our first simulation study, we empir-
ically verify Theorem 7 by showing that a level 1 — e credible set for the root node constructed
from the posterior root probabilities has frequentist coverage at exactly the same level 1 —e. We
consider three different settings of parameters: a = 0,5 = 1 (LPA), a« = 1,5 = 0 (UA), and
a = 38,8 =1. We generate G, according to the PAPER(q, 8,6) model with n = 3,000 nodes and
m = 7,500 edges. We then estimate o and 8 using the method given in Section S3.1, compute
the level € € {0.2,0.05,0.01} credible sets, and record whether they cover the true root node. We
repeat the experiment over 300 independent trials and report the results in Table 2. We observe
that the credible sets attain the nominal coverage and that the size of the credile sets are small
compared to the number of nodes n.

) 0,)] (L0 [ED[ 0D ] (1L0)[ED]01] 50
Theoretical coverage 0.8 0.8 0.8 0.95 0.95 0.95 0.99 0.99
Empirical coverage | 0.8 | 0.823 | 0.82 | 0.937 | 0.943 | 0.94 | 0.983 | 0.993

Ave. conf. set size 7 12 9 42 42 31 183 115

Table 2: Empirical coverage of our confidence set for the root node. We report the average over
300 trials. Graph has n = 3000 nodes and m = 7,500 edges in all cases.

Size of the confidence set: In our second simulation study, we study the effect of the sample
size n and the magnitude of the noisy edge probability 6 on the size of the confidence set. We let
G be the observed graph with n nodes and m edges according to the PAPER(«, 3, 6) model where
we consider (o, 8) = (0,1) (LPA) or (1,0) (UA). Since a tree with n nodes always contains n — 1
edges, "720 + n is approximately equal to the number of edges m in the observed graph G,.

We empirically show that the confidence set size does not depend on n so long as 6 is much
smaller than n~'/2 for LPA and much smaller than 2 for UA. To that end, we set m = cny/n
for ¢ € {0.1,0.2,0.4,0.6,0.8,1} for LPA and m = cnlogn for ¢ € {0.15,0.2,0.4,0.6,0.8} for UA. We
then plot the average size of the confidence set with respect to ¢ for n € {5000,10000}. We plot the
curve for n = 5,000 and for n = 10,000 on the same figure and observe that, when ¢ is small, the
two curves overlap completely but when c is large, the n = 10,000 curve lies above the n = 5,000
curve. This provides empirical support to Theorem 11 and Theorem 12. In fact, this experiment
shows that the bound of n” on the size of the confidence set in Theorem 12 is loose; the actual
size does not increase with n. The fact that the confidence set size seems to diverge with n when
c is larger supports Conjecture 13 and suggests that the problem of root inference exhibits a phase

transition when 6 ~ ﬁ under the LPA model and 0 = k’% under the UA model.

Frequentist coverage under sequential noise models: In our third simulation study, we verify
Theorem 7 for the seq-PAPER model with sequential noise described in Section 2.3. We generate G,
according to both the seq-PAPER(«, S, 9,&,5) model and the seq-PAPER* (¢, 3, 0, 0773,77) model
with deletion noise. We then construct the credible sets for the root node from posterior root
probabilities computed via the algorithm given in Section 4. We repeat the experiment over 200
independent trials and report the results in Tables 3 and 4. We observe that the credible sets attain
the nominal coverage. We also note that Table 4 shows that the seq-PAPER™ model can tolerate
tree deletion probability up to n = 0.08 without significant increase in the confidence set sizes.
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Figure 13: Size of the confidence set vs. the number of edges.

(o, B) (witha=a,8=p8)| (0,1) | (1,0) | (0,1) | (1,0) | (0,1) | (1,0)
Theoretical coverage 0.8 0.8 0.95 0.95 0.99 0.99
Empirical coverage 0.795 | 0.895 | 0.935 | 0.965 | 0.970 | 0.995

Ave. conf. set size 7 7 25 16 56 28

Table 3: Empirical coverage of our confidence set for the seq-PAPER(«, 3,6, &, B) model without
deletion noise, with 8 = 1.5 and & = « and § = 3. We report the average over 200 trials. Graph
has n = 600 nodes and around m = 1500 edges in all cases.

n (tree edge deletion probability) 0 0 0.04 | 0.04 | 0.08 | 0.08
Theoretical coverage 0.8 095 | 0.8 | 095 | 0.8 | 0.95
Empirical coverage 0.825 | 0.96 | 0.84 | 0.95 | 0.85 | 0.98

Ave. conf. set size 5.9 141 | 6.3 | 15.0 | 6.7 | 15.9

Table 4: Empirical coverage of our confidence set for the seq-PAPER(a, 3,6, &, B, 7) model with
deletion noise, with a =0, =1,&=38,8 =1,0 = 1.5 in all cases. We report the average over 200
trials. Graph has n = 300 nodes and around m = 750 edges in all cases.

Frequentist coverage for multiple roots: Our next simulation study is similar to the first
except that we generate graphs from the PAPER(a, 8, K, 0) model with K = 2. We construct our
credible sets as described in Section 3.3 and verify Theorem 8 by showing that the credible set at
level 1 — € also has frequentist coverage at exactly the same level. We consider two different settings
of parameters: a = 0,8 = 1 (LPA) and a = 1,8 = 0 (UA). We generate G, according to the
PAPER(«, 8, K,0) model with n = 700 nodes, m = 1,000 edges, and K = 2. We then estimate
a and S using the method given in Section S3.1, compute the level e € {0.2,0.05,0.01} credible
sets, and record whether they contain the true set of root nodes. We repeat the experiment over
200 independent trials and report the results in Table 5. We observe that the credible sets attain
the nominal coverage. In the LPA setting, the size of the credible sets are small but in the UA
setting, the sizes of the credible sets become much larger. We relegate an in-depth analysis of this
phenomenon to future work.
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(a, B) 0,1) | (1L,0) ] (0,1) | (1,0) | (0,1) | (1,0)
Theoretical coverage 0.8 0.8 0.95 0.95 0.99 0.99
Empirical coverage | 0.826 | 0.826 | 0.933 | 0.964 | 0.974 | 0.985

Ave. conf. set size 5 57 12 155 31 295

Table 5: Empirical coverage of our confidence set for the set of K = 2 root nodes. We report the
average over 200 trials. Graph has n = 700 nodes and m = 1,000 edges in all cases.

Posterior on K in the random K roots setting: In our last simulation experiment, we generate
PAPER graphs with K = 2 roots but perform posterior inference using the PAPER(«, §, ag, 0)
model and study resulting posterior distribution over the number of roots K. We consider two
different settings of parameters: a = 0,8 = 1 (LPA) and o = 1,8 = 0 (UA). We generate G
according to the PAPER(«, 8, K, 0) model with n = 700 nodes, m = 1,000 edges, and K = 2. We
report the posterior distribution over K, averaged over 20 independent trials, in Figure 14. We
observe that, in both cases, the mode of the posterior distribution over K is 2, which is the true
number of roots. However, the distributions exhibits high variance, which could be due to the fact
that the two true latent trees may have significantly different sizes.

UA LPA

0.20
0.15
0.10
0.05

0.00
25 10 20 2 5 10

K (num of roots) K (num of roots)

Figure 14: Posterior distribution over K averaged across 20 independent trials. Left: networks
have two latent UA trees. Right: networks have two latent LPA trees.

6.2 Single root analysis on real data

We now apply the single root PAPER model on real world networks. In a few cases (Section 6.2.1),
we can ascertain from domain knowledge that the network originated from a single root node but
more often, we use the single root model to identify important nodes and subgraphs (Section 6.2.2).

6.2.1 Flu transmission network

We analyze a person-to-person contact network among 32 students in a London classroom during
a flu outbreak (Hens et al.; 2012). We extract the data from Figure 3 in Hens et al. (2012) and
illustrate the network in the left sub-figure of Figure 15. Public health investigation revealed that
the outbreak originated from a single student, which is the true patient zero and shown as the
orange node in Figure 15. We apply the PAPER model with a single root to this network. We
estimate that 8 = 1 and a = 53.06 using the method described in Section S3.1 and compute the
60%, 80%, 95%, and 99% confidence sets. All the confidence sets contain the true patient zero and
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Figure 15: Left: contact network among 32 students in a flu outbreak. Center and right: two
examples of the latent tree generated by the Gibbs sampler.

their sizes are as followed:
60%: 6 nodes  80%: 10 nodes  95%: 19 nodes  99%: 27 nodes.

We provide the approximate posterior root probabilities of the top 7 nodes in Figure 15. The
true patient zero has a posterior root probability of 0.11 is the node with the 3rd highest posterior
root probability. In the center and right sub-figure of Figure 15, we also show two of the latent
trees T), that were generated by the Gibbs sampler.

6.2.2 Visualizing central subgraphs

Large scale real graphs are difficult to visualize but one can often learn salient structural proper-
ties of a graph by visualizing a smaller subgraph that contains the most important nodes. In this
section, we apply the single root PAPER model on four large networks and, for each graph, display
the subgraph that comprises the 200 nodes with the highest posterior root probability. We see that
the result reveals striking differences between the different graphs. Unfortunately, we do not have
the node labels on any of these four graphs and can only make qualitative interpretations of the
results.

MathSciNet collaboration network: We first consider a collaboration network of research
publications from MathSciNet, which is publicly available in the Network Repository (Rossi and
Ahmed; 2015) at the link http://networkrepository.com/ca-MathSciNet.php. This network
has n = 332,689 nodes and m = 820, 644 edges, with a maximum degree of 496. Using the method
described in Section S3.1, we estimate 5 =1 and a = 0. The sizes of confidence sets are:

60%: 3 nodes  80%: 6 nodes  95%: 21 nodes  99%: 112 nodes.

We display the subgraph containing the 200 nodes with the highest posterior root probability
in Figure 16a. We observe that the subgraph reveals a cluster structure that may represent the
different academic disciplines.

University of Notre Dame website network: We study a network of hyperlinks between

webpages of University of Notre Dame (Albert et al.; 1999), which is publicly available at the
website https://snap.stanford.edu/data/web-NotreDame.html. This network has n = 325,729
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nodes and m = 1,090, 108 edges, with a maximum degree of 10,721. Using the method described
in Section S3.1, we estimate = 1 and a = 0. The sizes of confidence sets are:

60%: 2 nodes  80%: 21 nodes  95%: 524 nodes  99%: 3498 nodes .

We observe that the central subgraph (shown in Figure 16b) reveals two hub nodes with many
sparsely connected “spokes”.

) e,
0201 .

ot
L Ogaere,

(a) MathSciNet subgraph (b) Notre Dame subgraph

Figure 16: Subgraph of the 200 nodes with highest posterior root probabilities.

6.3 Community recovery with the fixed K model

In this section, we show that we can use the PAPER model with multiple roots for community
recovery on real world networks. To estimate the community membership from the posterior sam-
ples, we use a greedy matching procedure. To be precise, our Gibbs sampler outputs a sequence of
forests fr(ll), ceey ~7({]) where J is the number of Monte Carlo samples. Each forest fy(f ) contains K
component trees which we denote ¢(1:7) £23) . $5J) We write Q,(Cj)(-) = P(I, = -| T = t*9)
as the posterior root distribution of the k-th tree of the j-th Monte Carlo sample. Since the tree
labels may switch from sample to sample, we use the following matching procedure: we maintain
K distributions Q1(+),Q2(+),...,Qk(-) and initially set Q = Qg) for all k € [K]. Then, for
j=2,3,...,J, we use the Hungarian algorithm to compute a one-to-one matching o : [K] — [K]
that minimizes the overall total variation distance

K .

STV, Qorr)-

k=1
Once we compute the matching, we then update Qy (1) < jj;.ng(k) + %Q,(Cj).

In this way, we interpret @1, ..., Qx as the average posterior root distributions for the K trees
across all the Monte Carlo samples and using the matching, we may also compute the posterior
probability P( w in tree k |én = gn), which allows us to perform community detection — we put
node u in cluster k if P( u in tree k |G, = g,) > P( u in tree k' |G, = §,) for all &’ # k. We use
the greedy matching procedure for computational efficiency — slower but more principles approaches
are studied by e.g. Wade and Ghahramani (2018).

6.3.1 Karate club network

We apply the PAPER model to Zachary’s karate club network Zachary (1977), which is publicly
available at http://www-personal.umich.edu/ mejn/netdata/. The karate club network has
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n = 34 nodes and m = 76 edges, where two individuals share an edge if they socialize with each
other. The network has two ground truth communities, one led by the instructor and one led by
the administrator (shown as rectangular nodes in Figure 17. These two communities later split into
two separate clubs. In this case, we apply the PAPER model with K = 2 roots. For every node w,
we consider the community membership probability P(u in tree 1 | én) and assign u to community
1 if and only if this value is greater than 0.5. We show the result in in Figure 17, where each node
has a color that reflects its community membership probability.

We correctly cluster all but one node, which matches the performance of degree-corrected SBM
Karrer and Newman (2011); Amini et al. (2013) (DCSBM)-the current the state of the art model for
community detection. The node that we misclassify has a posterior probability P(u in tree 1| én) =
0.47, indicating that the model is indeed unsure of whether it belong in community 1 or 2. We note
that the PAPER model requires only 3 parameters whereas the DCSBM for this network requires 38
parameters because each node has a degree correction parameter. SBM without degree correction
performs badly Karrer and Newman (2011).

Figure 17: Left: karate club network where node color reflects community membership probability.
Center and right: two examples of the latent forest generated by the Gibbs sampler.

6.3.2 Political blogs network

Next, we analyze a political blogs network (Adamic and Glance; 2005) that is frequently used as a
benchmark for network clustering algorithms; the full network is publicly available at the website
http://www-personal.umich.edu/ mejn/netdata/. This network contains m = 16,714 edges
between n = 1,222 blogs, where two blogs are connected if one contains a link to the other. For
simplicity, we treat the network as undirected.

The network again has two ground truth communities, one that comprise of left-leaning blogs
and one that comprises of right-leaning blogs. We again apply the PAPER model with K = 2 roots
and for every node u, we compute the community membership probability P(u in tree 1 | én) and
assign u to community 1 if and only if this value is greater than 0.5. We show the result in in
Figure 18, where each node has a color that reflects its community membership probability.

Our overall misclustering error rate is 9.1%, which is high compared to current state of the
art approaches; for example, the SCORE method (Jin; 2015) attains an error rate of about 5%.
However, we compute the misclustering error rate with respect to only the top 400 nodes with the
highest posterior root probabilities, which can be interpreted as the most important nodes in the
graph, our misclustering error rate drops to 3.5%. This confirms our intuition that the PAPER
model, when used for clustering, is more reliable for central nodes than for peripheral nodes.
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Figure 18: Left: political blog network where node color reflects community membership probabil-
ity. Right: one example of a forest generated by the Gibbs sampler. The 5 nodes with the larger
marker comprise the 95% confidence set for the roots.

6.4 Community discovery with the random K model

For networks with an unknown number of small and possibly overlapping communities, the ran-
dom K model PAPER(«, 8, ag, d) can be useful for discovering complex community structures. To
extract community information from the posterior samples, we again use a greedy matching pro-
cedure. To be precise, in the random K setting, our proposed Gibbs sampler outputs a sequence

of forests fy(Ll), cee fy({]) where J is the number of Monte Carlo samples. We write each forest ﬁ(f ),
for j € [J], as a collection of trees {£(19), ... #5519} where K; is the number of trees in fi/). For

j € [J] and k € [Kj], we write Qg)() =P(Il; = - | T = t*9) as the posterior root distribution of
the k-th tree in the j-th Monte Carlo sample. To summarize the output in an interpretable way,
we do the following:

1. We initialize Ka; = max;c( K; and Qy = 561) fork=1,2,...,K;. Fork=Ky+1,..., K.,
we initialize Qx(-) = 0.

2. Forj=2,3,...,J, wematch {Q1,...,Qxk,, } with {ng), e %z} by computing a one-to-one
matching o : [K;] — [Ka,n] that minimizes
STTVQY, Quiry)-
k=1

For every k € [K;], if the total variation distance between the k-th pair of the matching is
too large, that is TV(Q;CJ), Qo(ky) > 0.75, then we create a new set Ky <= Ky + 1 and set
QKu+1 Q,(j); otherwise, we perform the update Qg ) < jJ;.ng(k) + %Qg).

3. We output {Q1, ..., Qxk,, } as the discovered clusters, represented as posterior root probability
distributions.

For all of our experiments, we only include trees that contain at least 1% of the total number of
nodes. For each discovered cluster @, for ¢ € [K,], we also compute pg, as the number of Monte
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Figure 19: Posterior over K using the random K roots model on the karate club network (left)
and the political blog network (right).

Carlo iteration j € [J] where we match Q, with Q,(Cj), i.e. o(k) = ¢, and update Qy. We then
compute p% as the posterior frequency of cluster Q.

In order to check that the random K model is reasonable, we first apply it to the karate club
and the political blog networks, which we know contain two underlying clusters, and analyze the
resulting posterior distribution over the number of cluster-trees K. We provide the results for the
karate club network in the left part of Figure 19, in which we see that the posterior mode is at
K = 2. For the political blog network, the Gibbs sampler tends to produce a few large clusters and
many tiny clusters of fewer than 10 nodes. Therefore, to compute the posterior over K, we count
only clusters that have at least 12 nodes (1% of the total number of nodes) and give the results in
the right part of Figure 19. The posterior mode in this case is K = 3, which is reasonably close to
the ground truth.

We also analyze an air route network (Guimera et al.; 2005) of n = 3,618 airports and m =
14,142 edges where two airports share an edge if there is a regularly scheduled flight between
them. We remove the direction of the edges and treat the network as undirected. The dataset is
publicly available at http://seeslab.info/downloads/air-transportation-networks/. Using
the random K model, we discover a large central cluster containing major airports around the world
and various small clusters that correspond to more remote regions such as airports on Pacific and
Polynesian islands, airports in Alaska, and airports in the Canadian Northwest Territories. For
sake of brevity, we defer the detailed results to Section S5.2 of the Appendix.

6.5 Analysis of statistician co-authorship network

We now apply PAPER models to perform an extensive analysis of a statistician co-authorship net-
work constructed by Ji and Jin (2016). In this network, each node corresponds to a statistician
and two nodes u and v have an edge between them if they have co-authored 1 or more papers in
either Journal of Royal Statistical Society: Series B, Journal of the American Statistical Associa-
tion, Annals of Statistics, or Biometrika from 2002 to 2013. We consider only the largest connected
component which has n = 2263 nodes and m = 4388 edges. Ji and Jin (2016) in their manuscript
(Section 4.3) refers to this network as ” Coauthorship Network (B)”. We emphasize that since the
data reflect only coauthorship in 4 journals in the period 2002-2013, the results that we produce
cannot be used to compare researchers—we use this network only to illustrate PAPER models in a
setting where we can more easily assess whether the output is meaningful or not.

Single root analysis: We first use the single root PAPER(«, 3, 60) model where we estimate
a =0, 8 =1 using the EM algorithm described in Section S3.1. We find that the following 4 nodes
have the highest posterior root probabilities: (1) Raymond Carroll with root probability 0.32, (2)
Peter Hall with root probability 0.26, (3) Jianging Fan with root probability 0.086, and (4) James
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Figure 20: Subgraph of the co-authorship graph comprising the 200 nodes with the highest posterior
root probabilities. We label the 12 nodes with the highest root probabilities.

Robins with root probability 0.048. The root probability ranking align closely with betweenness
centrality ranking, in which Raymond Carroll, Peter Hall, and Jianqing Fan are also the top 3
most central nodes; see Table 2 of Ji and Jin (2016). Both the root probability ranking and the
betweenness ranking differ significantly from degree ranking. We also display the subgraph of the
200 nodes with the highest posterior root probabilities in Figure 20 where we labeled the top 12
nodes with the highest root probabilities.

Community detection with random K roots model: Using our inference algorithm and
the greedy matching procedure in 6.4, we compute clusters {Q1,...,Qk.,} where we find about
K., =~ 40 significant clusters. We order the clusters by their posterior frequencies and display the
top 9 clusters in Figure 21, along with labels that we curated; we display the nodes in the cluster as
word clouds in which the word size is proportional to the posterior root probabilities. We display
18 additional clusters in Section S5.3 of the Appendix. We note that the clusters can overlap since
they are constructed from a sequence of posterior samples by matching; see the first paragraph of
Section 6.4.

Ji and Jin (2016) on the same network uses scree plot to conclude that there are K = 3
clusters, which are shown in Figures 9, 10, and 11 in their paper. They refer to the three clusters
as a “high-dimensional” supercluster, a ”biostatistics” cluster, and a ”"Bayes” cluster. We find
a giant supercluster, but we also find a large number of smaller clusters which accurately reflect
actual research communities in statistics. For example, we find the same ”Bayes” cluster in Ji and
Jin (2016) (see Figure 21b), but we also discover other Bayesian clusters such as ones shown in
Figure 21c. Similarly, we find the ”biostat” community in Ji and Jin (2016) (see Figure 21f) but
we find other biostat clusters as well such as the one shown in Figure 21h and the one centered
on Jason Fine and Michael Korsorok in Figure 27 in the Appendix. In addition, we find many
other meaningful communities, such as the experimental design community or the high-dimensional
statistics community shown in Figure 22, or the survey and theory community in Figure 27 in the
Appendix. We believe that PAPER model gives highly coherent clusters for this network because

38



J1anq1ng Fa
Nilanjap, Chatterjee Bani Mall

Raymond J Carroli

Hans-Georg Myl « Jane-Ling Wang

nﬁ’m? L'fgrronMar‘_C sguggnto f Merllse A Cl deJose MBernardo ‘"“Wﬂmm Pe ter MullEr
e Rotnitaky Pe‘te r Hall § Jian Tu“ J Palomo™ Da unS

] Dongchu Sun jGerman Molina = ama Das Pe dad
Clp n, »;ralnlcea nufiua L1ang “Peter MUller‘Athanggllos lf(%%tun her | y Jﬁrlstlan P Robert; "

Soumendra N Lahiri Larry

(a) Central super-cluster

= Luc Devroye

william E Strawderman--
-Gonzalo Gargia- Dona

Jerry §acks§§ Parthasarajzhy
Toejun Ta
Rui Paulo=::su ]a ‘;:Pg‘tgag.sh

James d'Berger,

Feng g‘Liang

.Mare,.C KennedyO
John A Cafeo

(b) Bayesian

Bas J M Werkerssiid 4 5

voy Geurt_Jongblo
o

Andrew O Finley v

M1ke West 3 Ctélm%p‘co Baner

Joseph_E.Luc

Carin

Abel Ro§1guez Y

grian J fieich

(c) Bayesian

Helene Magsam, Beott Lindrath.

jee

~Alan_E Gelfand

ven N ‘MacEachern®

arey She - - Peter J DiggleBrent A Coull Dlpak K Dey
lexand re B Tsybak Gerda Claeskens § Hongy%gAn Deba}yotf S}nna vie

Georgi K Golub 5 W1ong Viu &reh
E'pniTfppe Wigollet Yaacov Ritov ~ yrjaaf "] ' ler h G I b ra h o

Aiyou Chen Yiyuap she ... TMTarteCn H Wegkamp 3 -A 1 Taomg koo Taoyan smp adley S Petérson . gznm 8 Rowe &

5 Arnak Dalalyan Tilsam Geeit ony Cai Anil Asnen pussboun L ‘t D e cols HTa abrata Maltl"‘e’ 20 Donglin Zengg:

3 Arnak DalalyanTi iting | RS Nssbaum u Zd u en“““ Borsti ) Tapabrat ) 8 85

1 H )

Mgssipi}iano, Ponnl entina Bunea S
Ermonas u stoker Mazzing) 11 Elogentine Bu

Peter J Bick elAl

vi Lin SEY PN

Karin LOU"I“Anatoll B Juditsky iy S &
Angelika Rond’fa" Yves Audibert | 0B "
o '"E “g‘ Tosttmer  Gabor Lugosi®'®® Y LERECL
eter

Songhe. C“Vladlmlr Koltchinskii Claire Tomlin

der Goldenshluger ©

- Adrian

nis Larocque

HannuMO*il

” Axel MunkDavy Paind

o

Visa

c
5
‘:» Bmg Y1 Jlng
L Dav1d Dunson
5ot

h Y H
fuesheng vin Brei t A Jo nson»

Mayetri Gupta

c:
S
232
john
S Marron

oimereQi-Man, Shqo Stuart R Lipsitz}

“~Heping Zhang,
Hongtu Zhu Yimei Li§
Lajos HorvathZ Andre1 Y Yakovlev, #

M Ryan I

(d) Theory (e) Multivariate Analysis (f) Biostat
Gareth Robe {Zhilia ﬁg“YIﬁgﬁ Mathias Drton
EBam Malhcskf ' _Ha 5 Rue“ﬂk‘“d A 5temfp; siavarTianxl Cal JasoanSFGDE;shEb.eur T 5 g A §§ Richar dSOI’lx
Hﬁ b ev rooks= 3 Vingye zheng 1 Kani Chen 3 drxan s;mu J Godsill
ci--Chris C Holmes Helene Massam
o Jonathan, Jawn. £ 0 =0 Arnaud _Doucet rees

Pa&%mf%gﬁggsa

= Gnbros Papas M.Z}&QK?L Simis Dan YU Lin—-  Seth SuA'ivant‘ =\ Bala RajSCALHAM omiris

David.

(i) Graphical Models

(g) Computation/UK (h) Biostat

Figure 21: Nine of the clusters that most frequently appear in the posterior samples. Word sizes
are proportional to the posterior root probability with respect to the cluster.

the network itself is locally tree-like, as shown in two cluster subgraphs that we display in Figure 22.

7 Discussion

In this paper, we present the PAPER model for networks with underlying formation processes and
formalize the problem of root inference. We extend the PAPER model to the setting of multiple
roots to reflect the growth of multiple communities. There are a number of important open questions
from modeling, theoretical, and algorithmic perspectives.

From a modeling perspective, an interesting direction is to suppose that the graph start not as
singleton nodes but as a small subgraph. The goal then is to infer the seed-graph instead of the
root node (c.f. Devroye and Reddad (2018)). Model extensions such as the PAPER-SBM mixture
described in Remark 5 are also interesting; in these models, a subtle question is to what extend we
have to estimate the parameters of the noise model well in order to recover the root nodes of the
latent forest.

There are many open theoretical questions related to PAPER model and root inference. For
instance, in Conjecture 13, we hypothesize that the size of the optimal confidence set for the root
node is of a constant order if so long as the noise level is below a certain threshold. If the noise level
is above the threshold, then every confidence set has size that diverges with n. The lower bound
of this conjecture seems especially difficult and may require new techniques. Another interesting
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Figure 22: Two additional clusters along with the subgraphs that correspond to the clusters. In
the subgraph, we label the 8 nodes with the highest posterior root probability with respect to that
cluster. We observe that the subgraphs are tree-like.

theoretical question is the analysis of community recovery using the PAPER model with multiple
roots. Intuitively, we expect be able to correctly cluster the early nodes since they tend to have
more central positions in the final graph. The late arriving nodes on the other hand would be more
peripheral and difficult to cluster.

Algorithmically, we observe that the Gibbs sampler that we derived in Section 4 converges very
quickly in practice (see Section S5.4). It would be interesting to study its mixing time, especially
how the mixing time depends on the noise level.
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Supplementary material to “Root and community inference on latent

network growth processes using noisy attachment models”

Harry Crane and Min Xu

S1 Supplement for Section 2

S1.1 Model Likelihood

We first give the likelihood of any time labeled tree under the APA(«, 3) model. Define, for any
integer k > 1,

i) itk >2
et '_{ T itk =1,

Proposition S1. Let T,, ~ APA(«, 8). Then, for any time labeled tree t,,, we have that

— _ L Hve[n] waﬁ(Dtn (U))
P =) = B ) =5+ (- D)

The fact that the likelihood depends on the tree ¢, only through its degree distribution Dy, (+)
remains true in the multiple roots setting except that the likelihood also depends on the root nodes.

(S1.1)

One complication with the multiple roots setting is that we give each root node an imaginary self-
loop. To deal with this, we first define ¢[, 5(k) := Hfizl(ﬂj + a).

Proposition S2. Let F,, ~ APA(«a, 8, K). Then, for any time labeled forest f,, we have that

[oen s Ya3(Pra (V) [logn, o Yop(Dy, (v))
[k 2= 1B+ (t - Do) '

In the random K setting, the likelihood is very similar except that the set of root nodes is not

P(Fn = fn) = La,ﬁ,K(fn) = (812)
necessarily m1.x.

Proposition S3. Let F,, ~ APA(«, 8, ). Then, for any time labeled forest f,, with K component
trees, we have that

[loes ¥a.5(Pg, () [ugs Yas(Dy, (v))
[k Q=1+ (t—1a)

where S is the set of root nodes of f,, that is, a node is in S if and only if it has the earliest arrival

P(F, = fn) = Lap,s(fn) = (S1.3)

time in its component tree.

Under the PAPER model, the complete data likelihood is also simple owing to the fact that any
non-forest edge of the random graph G,, is Erd6s—Rényi and any forest with K component trees
has exactly n — K edges. Therefore, for a time labeled graph g,, with m edges and a time labeled
sub-forest f,,, we have that, under the PAPER model and conditional on G,, having m edges,

nn—1)/2—(n—

KN\ B
m— (n—K) ) P(Frn = fn)-

We do not observe the forest of course. This is one of the main hurdles that we address in Section 4.
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S1.2 Poisson attachment approximation

Proposition S4. Lett € N, and let ¢1,...,q: € [0,1] satisfy 22:1 g; <1, and let 6 > 0 such that
0q; <1 forallie[t]. Let X and Y denote two random subsets of [t], where X is generated by
adding each j € [t] independently with probability 0q;, and where Y is generated by first drawing
M ~ Poisson(0) and then repeating M times the procedure where we randomly choose j € [t] with
probability q; and with replacement and add j to Y. Let P and PY) denote the distribution of
X and Y respectively. Then, we have that

dTV(P(X),P(Y)) < 6? max g;.
JElt]
Proof. For j = 1,...,n, define X; = 1{j € X} and Y; as the number of copies of element j in
Y. Direct calculation then shows that Xq,..., X, are independent where X; ~ Ber(fg;) and that
Yi,...,Y; are independent where Y; ~ Poisson(6g;).
Therefore, by a coupling argument (see e.g. Example 2 in Chapter 10.1 of Pollard (2002)) and
the fact that Z;Zl ¢; <1, we have

t
dry (PR, PO <P(X £Y) =) P(X; #Y))

j=1

t
<) <0 max g,
P

as desired. O

If we apply Proposition S4 to the independent Bernoulli noise model described in Section 2.3,
where X and Y denote the random set of edges added under the Bernoulli noise model and the
BDT,_, (j)+a
2(t—2)G+(t—1)a
maxjep) ¢j = OP(%) (see e.g. Section 8.7 in Van Der Hofstad (2016)) to see that the two noise

Poisson noise model respectively and where ¢; = , then we may use the fact that

models are approximately equivalent for large t.

S2 Supplement for Section 3

Recall that for an alphabetically labeled tree £,,, we define the hist(%,) as the set of all label ordering
7 € Bi([n],U,) such that 7%, is a time labeled tree that has a positive probability over the APA
model (Definition 1). For a node u, we also define hist(u, £,,) as all = € hist(,,) such that 7; = u and
h(u,t,) = |hist(u, £,)|. Shah and Zaman (2011) derives an O(n) runtime algorithm that computes
the whole collection {h(u,%,)}ucw, , which is shown as Algorithm 4.

S2.1 Equivalence to maximum likelihood

Before deriving the likelihood formally, it is useful to have the following standard definitions. For
two labeled graphs g, g’, we say that g ~ g’ if there exists p € Bi(V(g), V(g’)) such that pg = g'.
In this case, we say that g and g’ are isomorphic, or that they have the same shape, or that they
are equivalent as unlabeled graphs. The ~ relationship defines equivalence classes on the set of all
labeled graphs, which we refer to as the unlabeled shape or just shape for short. We write

I(g,9") ={peBi(V(g),V(d)) : rg=4'}.
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Algorithm 4 Computing {h(u,t,)}uey, (Shah and Zaman; 2011)
Input: a labeled tree t,,.
Output: h(u,t,) for all nodes u € U,.
Arbitrarily select root ug € U,.
for v € U, do
Compute and store n"®) := |Eq(1“°)|.

end for

Compute h(ug,t,) = n! [Tucw, m

Set S = {Children(ug)}.

while S is not empty do
Remove an arbitrary node u € S.
Compute h(u,fn) = h(pa(u),fn)%
Add Children(u) to S ’

end while

Note that I(g, g) is the set of automorphisms of the graph g. To represent an unlabeled shape, we
write sh(g) where g an arbitrary representative element in the equivalence class.

Similarly, given a node u € V(g) and v € V(g’), we say that (g,u) ~o (g’,v') if there exists
p € Bi(V(g),V(g’)) such that pg = g’ and p(u) = v'. In this case, we say that (g,u) and (g’,u’)
have the same rooted shape. The ~ relationship defines an equivalence class on the pairs (g, u).
We write

I(g,u,g",u') :=={p € Bi(V(g),V(g)) : pg =g',p(u) =u}.
We have the following facts:

1. I(g,g’) is non-empty if and only if g, g’ have the same shape. Moreover, the cardinality of
I(g,g’) depends only on that shape. For instance, |I(g,g’)| = |I(g,g)| if the former is non-
zero. In discrete mathematics, this cardinality is referred to as the size of the automorphism
group of g.

2. I(g,u,g’,u') is non-empty if and only if (g,u), (g’,u’) have the same shape. Moreover, the
cardinality of (g, u,g’,u") depends only on that shape.

Now, for a labeled graph g and a node u € V(g), we define

Eq(u,g) ={u' € g : (g,u) ~o (g,u)}.

Nodes in Eq(u, g) are indistinguishable from node u once the node labels are removed.
On observing an unlabeled graph sh(g,), the likelihood of a node u being the root node is
therefore

. 1 .
L(u,gn) = Ba(w. )| > P(Gh=g2)1{(gn, 1) ~o (gn,w)},

gn time labeled

where G, has the PAPER(«, 3, 0) distribution. It is straightforward to check that £(u, g, ) depends
only on the unlabeled shape of (g,,u). We give a concrete example of the likelihood in Figure 23.

Theorem S5. For any alphabetically labeled graph g., we have

L(u, gn)

Rl sy Y N}
vEU, N
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Figure 23: Viewing the top right graph as g and the bottom graphs as g*, g%, g%, we have Eq(4, §) =
{A,C} and L(A4,g,) = %{P(Gn =g') +P(G, =g°) +P(G, = g3)}.

Proof. We have that

T€BIi([n],Uy), T1=u

x > PG, =7"'gn)

T€BIi([n],Uy), T1=u

= Z Z ]P)(Gn = gn)

gn time labeled =eBi([n],Un),
T1=U,Tgn=9Gn

= Y Ign 1,60, 0)[P(Gy = g0)

gn time labeled

)] ) )
~ e 2 E(Gi=ga)1{(gn1) ~o @Gn )

gn time labeled

where the second equality follows by the definition of I(g, 1, g, u) and the final equality follows by
Lemma S6. The desired conclusion immediately follows.
O

Lemma S6. For any labeled graphs g, g’ and nodes w € V(g), u' € V(g'), if (g,u) ~o (g’,u’), then
|I(gvg,)| = |I(g’u7g/7u/)||Eq(uvg)|'

Proof. Suppose |I(g,u,g’,u')| > 0. We note for any node v € V(g), we have that |I(g,v,g’,u')| is
either zero or equal to |I(g,u,g’,u)|. Moreover, it is non-zero if and only if v € Eq(u, g).
Therefore, using the fact that I(g,g’) = Uyev(g)I(g,v,g’',u), we have

I(g,9") = > (g,v,g )| = [Bq(u,gn)l|I(g,u.g’ ),
veV(g)

as desired. 0

S3 Supplement for Section 4

S3.1 Parameter estimation for the PAPER model via EM

The PAPER models are parametrized by «, 8 which control the attachment mechanism, by 6 which
is the noise level, and by either K or «g in the multiple roots setting. We discuss some ways to
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select the number of trees K in the fixed K root setting and ways to estimate «q in the random K
roots setting in Section S3.4 of the appendix.

In this section therefore, we consider only the estimation of the parameters o and 5. We assume
that 8 > 0, in which case, without loss of generality, we may assume 8 = 1 so that we only need to
estimate . We note that assuming 8 > 0 does not exclude uniform attachment if we allow o = oc.
We first consider the single root setting. For any tree ,, by Proposition S1 that

Po(Tp=ty) = >  Po(T,=n "t|I=mP(l=r)
mehist(t,)
Dg, (v)—1, .
[loew, I1;255 (J+a) 1
[Tizs(2(k —2) + (k — 1)a)

Therefore, keeping only terms that depend on «, we have that the log-likelihood is

= h(t,) (S3.4)

la;Ty) = Z Zlog j+a)1{j < Dz Zlog + (k= 1)a)

veunj 1
_Zlogj+a Zlog + (k- 1)a),

where we define Wy, (j) := [{v € U, : Dy, (v) > j}|. We note that, in this case, the log-likelihood
of a depends on the tree T, only through its degree sequence.

In the PAPER model where G,, = T, + R, for every node v € U,, we have that D¢ (v) =
Dy, (v) + Dg (v) where the tree degree Dy (v) is now latent. We propose an approximate EM
algorithm in this setting.

The complete data log-likelihood in this case is

la;Dg,, Dz ) = log(j+ @)Y 1{j < Dg, (1)} = Y _log(2(k — 2) + (k — 1)a).
j=1 v k=s
For a given value o', the EM update is then to maximize

M(a|d!) :=Eq {Z log(j + ) > 1{j < Dy, (v)} ’ én} - Zlog(z(k —2) + (k- 1)a)

o0

Z g(j + ) Z]P)O/{]<D

} Zlog +(k—1a).  (S3.5)

The conditional probability term Po/(j < Dy (v) | Gn) can be computed by Gibbs sampling,
but we can significantly reduce the computation time by approximating Po/(j < D, (v) | G,,) with
Por(j < Df, (v) | Dg, (v)), which ignores the mild dependence between the degrees of all the nodes.
To further improve the quality of the approximation, we observe that

DY Par(j < Dp,(0)|Gn) =D (D (v) = 1) =n —2

Jj=1 v v

~—

while the sums of the approximate conditional probabilities Y272, 37 Par(j < Dy (v)|Dg, (v)

G,

|
may be different. Thus, we normalize Py (j < D (v)|Dg, (v)) by defining W ) = (n—
(

o' <Dz, (v)| Dg, (v)) 0 1F
2)ZJ : i/(y<TDU (U)TB;(U)) so that 32, W (j) = n — 2 and, instead of maximizing (S3.5), we
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update
M(ala) Zlog jt+ta)Wea (5) - Zlog(2(k -2)+ (k- 1)a). (S3.6)
k=s

In practice, we find that the normalization significant improves the quality of the approximation.
To compute W , we have by Bayes rule that for any k € [n] and s <k,

Po (Dg, (v) = s, Dp (v):k—s)

Py (Df (v) =5s|Dg (v) =k S3.7
(D3, () = 51 Dg, (0) =) = o e =0 S =0 (53.7)
_ IfDBin(n—s,@) (k ) ( T, (’U) ) ’ (838)

> i1 PBin(n—t,0)(k — )P/ (D, (v) = 1)

where Ppin(,,—s,0)(-) denotes the probability of a binomial distribution with n — s trials and
success probability 6. The exact distribution of the degree Dy (v) of a node v under the APA, ;
is intractable but we can approximate it by its limiting distribution
I(s+a)'B+2a)  24+0d L

Pa/ = (2 ! .
()= O s 2 T A 20~ 35200 Hj+3+2a

By Van Der Hofstad (Theorem 8.2 2016), we have that, for any node v,

SupUP’a/ (D,j—, (1}) = 5) — Pa’(5)| < Ca’\/@
seN " n

with probability that tends to 1 as n — oo. Therefore, we may replace P,/ (Di“n (v) = s) with

P,/(s) in (S3.8) to obtain a tractable approximation which is accurate in the limit.

To summarize, our estimation procedure generates a sequence o where o/ maximizes M(-|a/~1)
and where M is computed using (S3.8). Although we approximate M(-|-) by M(-|-) and approx-
imate the distribution of the random degree Dy (v) by its asymptotic limit, we find empirically
that the resulting procedure always converges and/performs well. We test the estimation procedure
on simulated PAPER graphs of n = 3,000 nodes and m = 15,000 edges and report the estimation
performance in Table 6. We find that the estimator is biased upwards when « is large, which
is possibly because the likelihood (S3.4) is much less sensitive to a change in « when « is large
than when « is small. In our simulation studies (Section 6.1), we show that the confidence sets
constructed with the estimated parameters still attain their nominal coverage so that estimation
error does not significantly impact the inference quality.

True « 0 1 3 6 oo (UA)
Estimated a | 0.03 (0.04) | 1.04 (0.2) | 3.3 (1.34) | 10.7 (13.57) | 85.4 (20.9)

Table 6: Mean and standard deviation of the estimated o computed on 200 independent trials on
graphs with n = 3,000 nodes and m = 15,000 edges.

We use the same estimator in the fixed K > 1 setting and the variable K setting. In these
cases, the log-likelihood is slightly different because the root nodes have imaginary self-loop edges.
However, if the number of root nodes is small, the log-likelihood is virtually identical.
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S3.2 Derivation of root sampling probability (20) for the fixed K and
random K setting

Let fn be an alphabetically labeled forest with component trees t',...,t%. For a specific tree t*
and a node u € V(t*) C Z/ln, we compute the probability, under the PAPER( , B, K,0) model and
label randomization, that «* is the first node of t* given F, = fn

To formally derive this, denote the K random component trees of the random forest F, by
T, ..., T, and define IT* as the random latent relative ordering of the nodes in the k-th random
component tree T*. In other words, IT* takes value in Bi([n*], V(T*)) (Where nk = |V(T*)|) and
[I¥ = v implies that v is the t-th node, among the nodes of T* to arrive in T*.

Then, we have that, for any u € V (%),

P =u|TF =)= Y PF =q"|TF =)
mk €hist(u,t*)

x Y. PTF =0t =r")

ok €hist (u,t*)

Dy (w)+1 Dy (0)—1
o h(u, t¥) H (Bj + ) H H (Bj + )
j=2 vEupeV () J=1
Dy (v)—1
= h(u, £*)(8Dg. (u) + B + @) (8Dg. (u) + a) H (Bj +a)
vev(tk) J=1

oc h(u, £°)(BDg. (u) + B + @) (BDg. (u) + a),

where the third proportionality (equality up to multiplicative factor that is constant with respect
to u) follows from Proposition S2. Formula (20) thus follows.

S3.3 Collapsed Gibbs sampler

We give an alternative Gibbs sampler in which we sample only a set of root nodes instead of
sampling an entire history w. More precisely, we alternate between the following two stages:

(A) We fix the forest f and sample a set of root nodes § with probability
P(S=5|F,=f,.G,=9) xP(S=3|F, = f,), (S3.9)
where § comprise of a single node from each of the component trees of f,,.

(B) We fix the root set § and generate a new forest f'n by iteratively sampling a new parent for
each of the nodes.

To sample the root set for the first stage of the Gibbs sampler, we write £!,...,t%X as the K
disjoint trees of the fixed forest fn Then, to generate the root set §, we generate, for each tree t*,
the root node u* with probability (20).

For the second stage of the Gibbs sampler, we place the nodes in some arbitrary order and for
each node u, we generate a parent u, which could be equal to the old parent, according to the
distribution

P{pa(u) = @|{pa(v)}vru, S=35G, = Gn}- (S3.10)
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Root uM

Figure 24: Selecting a new parent for a node. Left: the single root setting. Right: the multiple
roots setting.

The action of generating a new parent is equivalent to replacing the edge between u and its old
parent with a new one between v and 4. Because we do not condition on the ordering II, the new
parent % can be any node in the network connected to u that is not a descendant of u—that is, we
only require that @ is not in the subtree ff) of node u, where we view § as the roots for the whole
forest.

Another way to think of the second stage is that we take the subtree fq(f ) and graft it onto
another part of the forest. In the multiple roots setting, a subtree may be transferred from one
component tree to another. In the random K setting, two disjoint subtrees may be merged into
a single tree or, a subtree may be split and forms a new component. See Figure 24 for a visual
illustration.

In contrast with (24), we do not condition on IT and must therefore sum over all histories when

computing (S3.10):
P(Fn:fn‘én:gnvgzg)
-1
:(n(n—l)/Z—n+K> Z ]P’(Fn:fn,HZW)

m-—n-+k _
w€hist(3, fr)

K
m-—n+k -1z
OcHn(n—l)/Q—n—i-k Z~ ( A ™

k=1 mwehist (3, fn)

Lo (D i) if single root

K
m—n+k _ = ~ - )
x H =2 -nxt kh(s,fn) Lok (8, Dy ) if fixed K roots

Lagay(3,Df)  if random K
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where we have that

Dy, (v)—

D;)=1] H 53+0‘

Df (v)+1 (

LaﬁKSD H H (Bj + @) H 5]+a

vES Jj=2 vEs j=1
Dg. (v)+1 7, ()

La,g,a0(5,Dg,) = g H H (Bj + o H H /BJ +a)

vES Jj=2 vE3 j=1
We may characterize the count of the history as follows:
n!'T1, ‘tTl)' if single root
h(s, fn) =< (n—K)! vag ﬁ if fixed K roots

n—1)! 1 if random K roots
v \t( )l

We summarize the resulting procedure in Algorithm 5 and 6. These are similar to Algorithm 2
and 3 except that we take into account how the choice of the graft affects the size of the history of
the resulting forest.

Algorithm 5 Collapsed Gibbs sampler for fixed K or single root settings

Input: labeled forest fn, a set of K root nodes s.
Effect: Modifies f,, in place.
for each node u € U,, do:
if u € §, continue.
Remove the edge (u,p(u)) from f,,.
Generate a node w € Ngn\V(ﬂ(f)) with probability proportional to

7(3)
ty -
w H %(,@Dﬁ(w)—i— 201{w € §} +a),
vEAS w)v%s |t |+|t ‘ ) fVK
only for >1
where Az (w) is the set of ancestors (parent, parent of parent, etc) of w including w itself.
Add edge (u,w) to f,.
end for

S3.4 Practical details on the Gibbs sampler

Convergence criterion: We use a simple convergence criterion where we run two chains simulta-
neously and keep track of the resulting posterior root distributions, which we denote Q# and QF
for the two chains. We continue the chain until the distance (we use Hellinger distance or total
variation distance in all the experiments) between Q* and QP is smaller than some threshold 7.
We find that 7 = 0.1 suffices to generate accurate confidence sets for the root node in the single
root setting. However, in the multiple roots setting, we require 7 = 0.01 or smaller. We observe in
our experiments that the UA setting (o = 1,8 = 0) requires far more iterations to converge than
the LPA model (o = 0,8 = 1). It is important to note that the chains A and B are initialized
with uniformly random spanning trees and uniformly random orderings on those trees so that the
initialization is guaranteed to be overdispersed.
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Algorithm 6 Collapsed Gibbs Sampler for the random K setting

Input: labeled forest f,,, a set of root nodes 3.
Effect: Modifies f,, and § in place.

for each node u € U,, do:

If u € § and |§| = 1, continue.
Ifu€sand 3] > 1, set s =35\{u}; else, remove the edge (u,p(u)) from f,.
Generate w € {f} U (Ngn\V(fEf))) with probability proportional to
£(5) . . (5
w HveAfn(w) W(ﬂDﬁ(M) +201{w e s}t + ), ifwe Ngn\V(tL))

m—n+|3| : —
MHQOW lfw—®7

where Az (w) is the set of ancestors (parent, parent of parent, etc) of w including w itself.
Ifwe Ngn\‘/(~7(f))7 add edge (u,w) to f,. Else, if w =0, let 5 = 5U {w}.
end for

Estimating K in the fixed K roots setting: one way to select K is by maximum likelihood.
For K =1,2,3,..., let G, be distributed according to PAPER(«, 8, K, 0) and let

[:(K) = ]P)(Gn = gn)

= Z P(én:gn|ﬁ :fn,H:W)P(Fn:fn,H:ﬂ)
anJ:K(gn)vﬂ'

:<n(n—1)/2—(n—K)>l 3 P(Fnzw_lfn)%.

(- K
" (n ) an-FK(gn)aW

Using the Gibbs sampler, we would then evaluate £L(K) for all K € [n]. This however would be
computationally intensive. We therefore recommend the random K model in settings where K is
unknown and potentially large.

Estimating «y in the random K roots setting: We estimate oy by adding one more step
in the Gibbs sampler where, after we generate a new forest and potentially a new K, we sample
ag from the posterior distribution P(ag | K). To that end, we use an Exponential()\) prior on g
(we use A = 0.1 yielding a variance of 100 in all experiments) and follow West (1992) to generate
posterior samples from P(«q | K). We find that the resulting estimate is insensitive to the choice of
the hyperparameter A and performs well in practice.
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S3.5 Details for algorithm under sequential noise models

Let @, be an alphabetically labeled graph and %, be a spanning tree of g,. Write 7, = g,\t, as
the subgraph of g,, that comprises of the noise edges. We then have

n—1 n
P(Gn=gn|N=mT,=t,) =[] [] Qi

=3 k=j+1

~ 0 BD~,C (7 +a 1{(m;,mk)ETn}
where Qjr = Qjr(m, t,) = {2(}5; — ;)éi Z) - T))~ }
2( = 2)3 + (k= 1)a — 63D, (my) +3a) | Hmm)#en)
{ 2k —2)8+ (k—1)a } '

In some cases, it is convenient to refer to nodes through alphabetical labels U,,. Let u,v € U,

be a pair of nodes and suppose 7,1 < 7, 1; we write

3 (ﬂD - (u) + @) L{(u,0)ERn}
qu = qu(w,tn) = {2( T ) +1 (Tr ) } (8311)
2t —2)B+ (m‘l - 1)a— 9(5Dt (W) @)y @) gan)
{ —— } (S3.12)
2(my !t = 2)B + (mo )a

For simplicity, we leave implicit the dependence of Qq, on 7, gy, and £,.

S3.5.1 Preliminary calculations

To simplify notation, for two positive integers j < k, we write [j, k] := {j,7 + 1,...,k}, [J, k) :=
{]7j+ 13"'7k_ 1}, and (jvk] = {]+17]+277k}

We first describe a fast algorithm to compute, for a particular node u and a time interval [7, k]
where 1 < j, the quantity

I Qur.: (S3.13)

te[jvk]

which can be interpreted as the part of the noise likelihood associated with node u on a time interval
[7,k]. We first observe that

( u)+d) }]1{(u,m)€1:n}

_ Dy, (
1l @us = H{ W25+ (- 1)
.

joN

te(j,k] te(g,k]

{ 2t —2)p 1)a —0(BD;,  (u) + &) }1{<um>¢én}
2(t—2)B + (t—1)a '

We extract the term C; := Hte[j’k] m to obtain

[T @ur =C1 I {0300, () + @)} 1™ o~ 2)5 4 (1 — 1)a — 0(ADy, , (u) + @)} (%90

te[4,k] te(g,k]

{ ( )5+( ) }]1{(um)et”}
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We divide the time interval [f, k] into sub-intervals in which Dy, ,(w) is constant. To that end,
define j =tg <t; < ... <ty =k+ 1 such that

Dgt_l(u) = do for all t € [to,tl),
thil(u) =dy=dyp+1forallte [tl,tg),

thfl(u) =dpy_1=dop+ M —1forallt e [tju_l,tM).

Then, we have that
M—1

T Que=c 11 TI {0(Bde+a)}t s
tels k] =0 teltetor)
{2t = 2)B + (t - D)a — 0(Bde + @)} 1™ o — )5 + (¢ - pyay e

M—1 3 ~ L{(u,m¢)EFn}
- (ﬁde + a)
=all 11 { 20— 2)5+ <t—1>d—0<5de+a>}

0=0 te(te,torr)

2(t—2)3+ (t—1)a () €8} i o
{ 2t~ 2)B + (t — 1)a - 0(Bds +&)} {20t = 2)8 + (¢ = 1)a — 0(de + &)}

To simplify, we observe that 2(t — 2)3 + (t — 1)@ = (28 + @)t — (43 + &) and hence,
[I {@5+a)-@B+a) -0(Bde+a)

tElte,ter1)

F(t£+1 _ (4[3-‘1—51)2—;3_(5(1[-‘1-54))
F(t[ _ (4ﬁ+5¢)2—gi(§d[+54))

= (25 + ayen

Therefore, we may re-write [[;c(; ;) Qu,x, as follows:
_ (45+5¢)+~9(5de+07))

C m 28 + &)ter1—te F(tg ! 2p+a
H Qur, = C1 H (26 +a) T(t, — (4B+&)+~9(Bd2+&))
LtE[j,k] £=0 ‘ DY

H(Bdl + 54) L{(u,m¢)ETn} Q(t - 2)B + (t - 1)5& 1{(u,m¢)EL, }
11 ){2(t—2>5+(t—l)d—e<3de+&)} {2(75—2)54'(7«‘—1)07—9(503@4-54)} '

te€lte,totr

The quantities {ty, dg}é\i 5!} can be readily computed by iterating through the neighbors of u in
gn. Therefore, this entire expression can be computed in time at most O(Dg,, (u)), as M < Dg, (u).
This concludes the description of the algorithm for computing (S3.13).

Now, suppose u is a node such that 7, ! < k and that Dr,_,(u) = 1for all t € [r,; ! + 1,k]. We
now give an efficient method to compute

k
I Qur- (S3.14)
t=1

This is the part of the noise likelihood associated with node u on the time interval [1, k]. We have

that
Pl

k
H Qu,ﬂ't - H Qu Tt H Qu T - (8315)
t=1 =

— t=my ' +1
\_\,_/

first term second term
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To compute the first term of (S3.15), we have

W,Lﬁl Trulll—l H(BDt . 1(7rt) —+ &) 1{(u,m:)ETp}
Qu,ﬂ't = { — Tu = — — }
=1 o 2wt —=2)8+ (m' - 1)a

2(mt — 2)3 +(m;t = 1)a— Q(B‘Dtﬂ—l_l(ﬂ—t) + &)\ H(wm)¢dn}
{ 2(my ' = 2)B + (ma' — Da } '

1 2(ﬂ;172)5+(w;171)5479(613%71 (me)+a)

Define Cy = El 2(7r;1—2)B+(7r;1—1;5¢ = . Then,

-1
T, —1

2t —2)B + (n;t - 1)a
U 02 1 ~ 1 - ~ ~
t[[l e {2(7ru =2)B+ (m —1)a— H(ﬁDtﬂ;lfl(pa(U)) + @) }

-1
m, —1

0(BD; _, (m)+a) 1{ (e u) €}
t[[l {2(71-”1 —2)f+ (i - 1)5‘_9(3Dtml_1(ﬂt)+d)} .

Since it takes at most O(Dg, (pa(u))) time to compute Dr , (pa(u)), we see that the above

—1

expression, excluding Cs, can be computed in time at most Ou(Dg” (pa(u)) V Dg, (u)). We do not
need to compute the C5 term in practice as we care only about ratios of likelihoods.
For the second term of (S3.15), we have that

ﬁ Qur, = ﬁ { 0(3Ds,_, (u) + &) }MW”E’*’n}
t=mg 41 P 2(t — 2)6 + (t - 1)&

{ 2t —2)B + (t — 1)a — 0(BDy,_, (u) + &) }n{w,m)egn}
2t —2)B+ (t—1)a '

Since we assume that (7, u) is not a tree edge for every t = 7,1 + 1,...,k, we have that

D¢, ,(u) =1forall t € (m,; 1, k] and thus,

k B k 9(5 + d) 1{(u,m¢)EPn}
IT @u~= 11 {2(t2)B+(t l)d}
+

t=my ' 41 t=my

d) }M(%’H)%@n}

k 2(t—2)B+(t—1)a—0(B+&
Define C3 = [[,_, -1, { ( 22t72(),é+2t71)(& )}, we then have

k B k 9(~+O~é) 1{(u,m¢)ETn }
H Qu,ﬂ't—CS H {2(t_2)6+(t_1)0~l—9(ﬁ~+d)} .

t=mgi+1 t=mg 41

S3.5.2 Calculation for transposition sampling

In this section, we provide an efficient way to compute the acceptance probability in the Metropolis—
Hastings algorithm for updating our sample of 7. For clarity, we write Q;x(m) = ij(w,fn) to
highlight the dependence of @, on m. We first state a Lemma that gives an easy way to check if a
proposed 7* is a valid history with respect to a given tree .
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Lemma S7. Let 7 € hzst(m, n). Let 7 be equal to e:ccept that nodes u and v, neu‘her equal to
71, are swapped. Assume without loss of generality that ;' < 7, 1. Then, m* € hzst(ﬂ'l, n) if and
only

(1) For any child w of u, we have w' > 7,1 and

(2) the parent pa(v) satisfies m_ ) < Ty

pa('u
Proof. If 7 is in hist(7y, ,), it is clear that it must satisfy the two conditions (1) and (2).

Now assume conditions (1) and (2), we aim to show that 7* € hist(my,#,). Since 7 is a valid
history, condition (1) implies that v cannot be a descendant (e.g. child, grand-child, etc) of w.
Moreover, (2) implies that all ancestors of v have a m-position earlier than u. Therefore, it follows
that swapping u and v yields a valid history 7*. The lemma follows as desired. O

We choose a pair v = 7; and v = 7, and define a new 7* equal to m except that

Suppose 7* satisfies the conditions of Lemma S7 so that 7* € hist(71,%,).
For a pair of nodes z,y € U,, recall the definition of @, (m) from (S3.12), where we now
explicitly state the dependence of @,,, on m. We have that

PGy =g |l =7"T, =t,) Pl =7* | T, =¢,) H Quy (T%)
P(Gp = gn |I =7, T, = t, )Pl = 7 | T}, = £,,) ey(T)

(z,y)

We claim that %‘:f& )) =1 for all z,y that satisfy one of the following three conditions:
1. both z,y ¢ {u,v,pa(u),pa(v)};

2. z € {u,v,pa(u),pa(v)} and 7, ' > k;

3. z € {pa(u),pa(v)} and 7! < j.

This follows from the definition of @, (7). Therefore, we have that

sz N Quy () Quy ()
11 11 Quy(T) 1l Quy ()

(z,y) yim, <k, y:m, <k,
y¢{pa(u),pa(v)} y¢{pra(u),pa(v),v}
H %pa(u)w((i; H QQpa(u)y(Z:)) ($3.16)
yimy e[kl pa(u),y YL elk] pa(v),y

The first two terms on the RHS of (53.16) are of the form (S3.14). The second two terms of the
RHS of (S3.16) are of the form (S3.13). Therefore, the whole expression (S3.16) can be computed
in time at most O(Dy, (v) V Dg, (v) V Dg, (pa(u)) V Dg, (pa(v))).

S3.5.3 Calculations for tree sampling

For seq-PAPER model without deletion of tree edges:
For clarity, we write Q;x(t,) = Qjx(m,t,) to highlight the dependence of Q;; on t,. For
convenience, let us define

F(t,) =P(G, = gn |l =7, T, =t,)P(T,, = t, |1 =) (S3.17)
v)—1

— H me(f Hvel/{” H t" (/BJ + a) (53.18)

thg (t - 2)ﬁ + (= 1a
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We iterate t = 2,3,...,n and sample a new parent for m; among the candidate set my.;_1) N

Ny, (m¢). For each w € 7,41y N Ng,, (7¢), define £™) as the disconnected graph that results from

£ a5 the tree that results from adding the

removing the edge (pa(m,), ;) from £,, and define
edge (w,m) to £57).
For t = 1,2,...,n, we then sample a new parent for m; by removing (pa(m;), ) and then

randomly choosing w € 71.;—1) N Ny, (7;) with probability

r Nglw,ﬂ't)
(") ETEAIS (S3.19)
Zuem:(t_l)mNgn (m¢) F(tn ' )

Calculating F (551‘”’“)) naively according to (S3.18) takes time O(n?). We give a faster algorithm
here.

We start by noting that if (1) @,y & m1.;—1) N Ng, (m¢) or (2) x € T1.4—1) N Ng, (7¢) and y is
such that 7ry’1 < t, then the tree degree of = at time 7r;1 —1 (or the tree degree of y at time 7! —1)
is the same under both ¢,, and tNSLw’m) for any w and hence, Qly(iﬁf‘“”t)) = Ql.y(fn). Therefore, we

have that

F(Em)) = C{B(Dyum (w) = 1) + a} 11 I Qu ), (83.20)

WET L (t—1)Ngy, (7t) y:my >t

where C' is a term that does not depend on w; more precisely, we have that

C= { 11 me(fn)}{ 11 H Quy(fn>}

mvygﬂ-l?(t*nmN@n (ﬂ.t) ueﬂ.l:(tfl)mNgn (ﬂ't) YTy

) (V)1 Dg, (v)—1

D{(. R .
{HUEFlz(t—l)ﬂNgn (7¢) HJZY (87 + ) HUQﬂl:(t—l)ﬁNgn(‘fft) HJ:1 (67 + ) }
[T 52t —2)8+(t—1a )

We make one further simplication. Since Quy(f(w>”t)) depends on the tree ~£lw’7r‘) only through its

degree sequence across time, we observe that, for an arbitrary fixed u € my,;—1) N Ng, (7¢), the

quantity [T, -1, Quy(f%w’m’))
w # u. Therefore, for any u € my,;—1) N Ng, (7¢), we write

depends on w only through the binary value of whether w = u or

B(u) = H Quy (™)) for any w # u

y:w;lzt
Aw) = [ QuyE™). (S3.21)
y:w;lzt

Then, by defining C' =[] B(u), we have that

UET.(4—1)NNg,, (7¢)
- A(w)
( 77T ) — . ! . —_— —
FEwm)y=C.C Blw) {5<Dg§fv"t>(w) 1) —l—a}.
The terms A(w), B(w) are of the form (S3.13) and can thus be computed in time proportional
to the degree Dy, (w). Therefore, the whole term F(f%w’m)) can be, up to constants C,C’ which

do not depend on w, computed in time O(Dg, (w)).

For seq-PAPER" model with potential deletion of tree edges:
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With deletion noise, we must incorporate the likelihood of tree edge removal into (S3.18). We
denote E(t,) and E(g,) as the sets of edges of t,, and §,, respectively and define

F(t,) =P(G, =g, |l =nT, =t,)P(T, =t, |11 =) (S3.22)
Dy, (v)—

_ HQw (i) Hveu g 72)ﬂ ((fj +1)a) (1 — ) EEINE@)] B E)\E @) (S3.23)
t=3 - -

Define t ™) as the disconnected graph that results from removing (pa(m;),m;) just as in the
discussion following (53.18) and, for w € my,(;—1), define 553“””) as the tree that results from adding
(w, 7). Note that we do not require w € Ny, (7¢), i.e. (w, ;) need not be an edge in g, and hence,
~(w17rt) ~
2 may not be a subgraph of g,,.

Following the same derivation as (53.20), we have that

F(t ,,w ﬂt) C{ﬂ t(w,frt)(w) —1)—|—a}
nl{(w,m)@n}(l _ n)l{(wm)egn} H H Quy(fglwm)% (S3.24)

UETL(1-1) yimy P>t

where C' is a term that does not depend on w.
Defining A(-) and B(-) as in (S3.21), we then have

~ A - -
FEw™)) =C.C"- BEZ’}% {B(Dywmo (w) — 1) + a} - ptt0mI€Gnd (1 — ) HCwmgdnd (33 25)
Since A(w) and B(w) can be computed in time O(Dy, ), we have that F(£,°™)) can be computed
in time O(Dyg,,) as well.
The overall procedure is then to sample w € 7y,;—1) with probability proportional to (S3.25)
and replacing the edge (pa(m;),n;) with (w,7;) in the tree .

S3.5.4 Parameter sampling for the seq-PAPER model

Although it may be possible to derive an EM algorithm to estimate the parameters «, 3,6, &, B in
the seq-PAPER model, we propose to take a full Bayesian approach where we impose a prior and
sample the parameters after sampling the ordering 7 and the tree 7, in the Gibbs sampler.

As in Section S3.1, we assume that 3,3 > 0 so that we may assume without loss of generality
that 3 = 8 = 1 and only estimate o and &. We propose to use an Exponential(\) prior for «, 0,
and & with A = 0.1. Conditional on the ordering 7 and the tree £, the likelihood for « is the same
as that of ¢(q; Tn) in Section S3.1; the likelihood for & and 6 is, writing #, = g \tn,

n

(6 H H

(Dg,_, (m5)+&) Y 1{(x;,m)EPn} 0(Dg, _ (mj)+&) y 1{(n;,m1)¢Gn} .
where Q; = {2 k kz)i k-1 } o {1 2(k k2)ik(k Da } o
the likelihood from the pair (7, 7).

is the contribution to

Conditionally on %, and 7, it is still intractable to directly sampling o, #,& so we propose
Metropolis updates where we generate the new proposal either by adding a draw from Unif[—, ¢]
or by multiplying with log-normal eZ for Z ~ N(0,d), where the ratio of proposal probabilities is
easy to compute with a Jacobian adjustment.
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S4 Proof of results in Section 5

We first give the proof of the optimality lemma for B.(-).

Proof. (of Lemma 10)
Fix €,6 € (0,1) and suppose that Cs.(+) is a labeling-equivariant (see Remark 4) confidence set for
the root node with asymptotic coverage 1 — de, that is, there exists a sequence p,, — 0 such that
P(p1 € Cse(Gy,)) = 1 — 0€ — punn.

Let A be a random permutation drawn uniformly from Bi(U,,,U,,) and write II = A o p so that
G, = AG; = IIG,, is the randomly labeled graph. Then, there exists a real-valued sequence
tn — 0 such that

P{II; € Cs5:(Gy)}
= Z P{m € Cs.(mGy) |IT = 7T}]P’(H =)
r€Bi([n]Un)
=P(p1 € Cs5c(pGr))
=P(p1 € C5(Gy)) = 1 — b€ + pim, (54.26)

where the penultimate equality follows from the labeling-equivariance of Cj.(-).

For any labeled graph g,, we have from definition (11) that B.(g,) is the smallest labeling-
equivariant subset of U4,, such that P(Il; € Be(t,) |G, = g,) > 1 —e. Then, if |B.(&,)] > |Csc(&n)],
then it must be that P(II; € Csc(Gp) |Gpn = gn) < 1 —e.

Therefore, we have from (54.26) that

1 —8e + pn, <P(I1; € C5(Gy))

= ZP(Hl € C&e(é‘n) | én = gn)P(Gn = gn)
&n
< P{lBe(Gn)| < |C5€(én)|} + (1 - G)P{|Be(én)| > ‘Oﬁe(én”}
We then obtain by algebra that
]P{|BE(G71)| > ‘Cz?e(én”} <6+ pn /e

which yields the desired conclusion. O

S4.1 Proof of results in LPA setting

Next, we give the proof of all statements regarding the LPA setting.

Proof. (of Theorem 11)

Since G,, = T,, + R,, for a linear preferential attachment tree T;, and an Erdés—Rényi graph
R,,, we have that Dg,, = Dr, + Dr,, .
By Pekoz et al. (2014), we have that, for any ¢ > 2,

1
NG

in distribution with respect to the ¢, metric where (Y7,Y2,...) is a random sequence satisfying
Z;il EY} < oo and each random variable Yj has a density with respect to the Lebesgue measure.

(D, (1), D, (2),...,Dr.(n),0,0,...) % (Y1, Y2, Ys,...),
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1

We first claim that, for any g > %, if § <n~279, then

%(DRH(I),DRH(Z), ...,Dgr, (n),0,0...) — (0,0,0...)

in ¢, metric. Indeed, we have

n
E|ln~**(Dg, (1), Dg,(2),...,Dr,(n),0,0,...)[|d =n"% > EDg, (k)*
k=1

(@) 1—4 . ®) 1-4
< n'2E(Bin(n — 1,0)?) < n'"2((20n)? + Cy)
1

49 4a_ A — A
< 2ipl7z2pz q‘SJqun 2 =2ip! q5+an1 2,

where the inequality (a) follows since Dg, (k) is Binomial with n— D (k) trials and hence stochas-
tically dominated by Bin(n — 1,8) and where inequality (b) follows from Lemma S8.
Since ¢ > 2V 1/4 by assumption, we have that

limsupE|ln~*/?(Dg, (1), Dg, (2),...,Dr,(n),0,0,...)[|2 =0

n—roo
and thus ﬁ(DRn(l)7 Dg, (2),...,Dg, (n),0,0...) = (0,0,...) in distribution.
Since Dg, (k) = D, (k) + Dgr, (k) for all k € [n], we have by Slutsky’s lemma that
1 d
—(Dg. (1), Dg. (2),...,D 0,0,..) % (1, Ya, Ya, ).
\/ﬁ( ¢.(1),Dg,(2) . (n) ) = (Y1,Y2,Y3,...)

We claim that, for any € € (0,1), there exists L, € N such that P(Y; < Le-max({Y,})) <e. To
see this, recall that Y] has a density ¢(-) on [0, 00) with respect to the Lebesgue measure and, fixing
some ¢ > 2, that IEqu — 0 as j — oo. Therefore, choosing any § > 0 such that P(Y; <4) < § and
L such that EY}! < £67, we have by Markov’s inequality that

P(Y; < V) < /0 T vy, > Hq(t) dt

P o)
< /0 q(t)dt + /5 P(YL, > t)q(t)dt

<P £0)+B(Ye, >0) [ alt)d
)
EY]
04

Since L.-max(-) function on sequences is continuous with respect to ¢,, we have by continuous

< — <
—|— €.
= 2 =

mapping theorem and Portmanteau lemma that
limsupP{Dg, (1) < Le-max(Dg,)} < P{Y1 < Lemax({Y,})} <e.
n—oo
This proves the first conclusion of Theorem 11.
To obtain the second conclusion, note that Ce(Gy,) := {1-max(Dg ),2-max(Dg ), ..., Le-max(Dg )}
is a labeling-equivariant confidence set for the root at asymptotical level 1—e. The second conclusion

follows from Lemma 10.
O

Lemma S8. Let X be a random variable with Bin(n,8) distribution. For any ¢ > 1, 8 € [0,1] and

any n € N, we have that
EX? < (20n)? 4 Cy,

where Cyq > 0 is a constant that depends only on q.
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Proof. Write X as a random variable with the Bin(n, #) distribution. Then,

EX? = / P(X7 > t)dt
0 (oo}
< (20n)? +/ P(X? > t)dt. (S4.27)
(20n)a
We note that VarX < 6n. By Bernstein’s inequality, we have that for all ¢t > (26n)?,
P(X9>t) = P(X — 0n > t'/7 — 0n)

<o 1 (tY9—6n)?
S (S L7
=P (t'/a — On) + 6n

1
< exp(—t'/?).

Therefore, we may bound the second term of (54.27) as

o oo L1/
/ P(X7 > t)dt g/ e dt
(26n)a (26n)a

e}
< / qs? e 5 ds.
0

S4.2 Proof of results in UA setting
Proof. (of Theorem 12)

Let T,, be a random recursive tree with the UA distribution. Let s € [n] be a node with arrival
time s and assume that s > n". For any integer ¢ > 1, we define the random variable

1 if node 7 + 1 is attached to node 1
7 :={ —1 ifnode i+ 1 is attached to node s
0 else

We note then that {Z(*)}?_ | are independent. If i > s, then EZZ-(S) = 0 and Vaers) =2

and if i < s, then we cannot attach to node s and hence, EZ*) = 1 and VarZ®) < 1. Define
Ze =31 7 so that
Z®) = Dr, (1) - Dr,, (s).

Then, we have that
n . S 1
EZ() = ;]EZi(‘) = 22 > (1+ ) logs

Varz(®) = ZVarZi(s) < Z%—F Z % < (1+ p2){logs+2(logn —logs) }.

=1 1=2 i=s+1

where we use 1, 2 to represent terms that are o(1) as n — oco. Therefore, we obtain that

E(Dg, (1) — Dg, (s)) =EZ + E(Dg, (1) — Dr,(s)) < (1 + u1)logs,
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where the inequality follows since Dg, (s) has the Bin(n — D, (s),0) distribution; since D (1)
stochastically dominates D (s), we have that Dg, (s) stochastically dominates Dg_ (1). We also
have the following bound on the variance of D¢, (1) — D¢, (s):

Var(DGn(l) — DGn(s)) = Var <Z Zi(8) + Dgr, (1) — Dg, (s)>
i=1

< EVar (Z Zi(s) + Dg, (1) — Dg, (s)

i=1

D, (1), DRn<s>)

+ VarE {Z Z) 4 Dg, (1) — Dg(s)

i=1

DR,,L<s>,DRn<1>]

(14 p2){log s + 2(logn — log s)} + 2nd

<
< (14 p3)(2 — ) log .

Hence, we have by Proposition S9 that
P(DGn (S) > DG,L(l)) = P<Z Zl(b) —+ DRn(l) — DRW(S) < 0>
i=1

< P(Zn: 7 4 D, (1) — Dr,(s) — E[Z®) + Dg, (1) - Dg,(s)] < —(1+ pu1)log 5>

(1+ p1)nlogn
(1+p3)(2—mn) 10gn>>

< 2exp(—<1 + 13)(2 — ) ogn - h(
< 2(1 4 py)n~ M)

Therefore, we have

n

P(|{s > n" : Dg,(s) > Da, (1)}| < 2¢~'n'~=mh(z=))

< en~HCEIRGEIE| (s > 07 ¢ Dg, () > D, ()}

< en A SN B(Dg () > D, (1))

- s=|n"]

< e(1+ pa).
Hence, we have that with probability at least 1 — (1 + uq4)e,
DGn (1) Z Ln,n,e‘ maX(DGn).

By optimizing 1, we have that for some v < 0.8 and universal constant C' > 0, with probability
at least 1 — (1 4 uq)e,

D¢, (1) > gn”— max(Dg,, ).
€

Therefore, we may form a level 1 — e asymptotically valid confidence set for the root node by taking
the %n” nodes with the highest degree in the observed alphabetically labeled graph G. The
second claim of the theorem follows directly from Lemma 10. 0

The next concentration inequality is standard.
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(a) Enron email subgraph (b) Youtube subgraph

Figure 25: Subgraph of the 200 nodes with highest posterior root probabilities.

Proposition S9. (Bennett’s inequality)
Let X1,...X, be independent random variables such that | X;| <b. Let V> 7" | Var(X;). Then,

for any t >0,
< Vo (bt
P( E X, —EX; >t> SZexp(—bzh(V)>,

i=1
where h(z) = (14 z)log(l + 2) — z.

S5 Supplement for Section 6

S5.1 Additional results for central subgraph visualization

Enron email network: This dataset consists of email exchanges between members of the En-
ron corporation shortly before its bankruptcy and the network is publicly available at the website
https://snap.stanford.edu/data/email-Enron.html (c.f. Leskovec et al. (2009)) for more de-
tails on the network). This network has n = 33,696 nodes and m = 180, 811 edges, with a maximum
degree of 1,383. We estimate § =1 and a = 0 and the sizes of confidence sets are:

60%: 7 nodes  80%: 11 nodes  95%: 42 nodes  99%: 2393 nodes .

The central subgraph of this network (shown in Figure 25a) exhibits a large central cluster with
many nodes that have relatively large posterior root probabilities. These nodes may correspond to
leadership personnel in the company.

Youtube social network: This dataset consists of friendship links between users in Youtube (Mis-
love et al.; 2007) and it is publicly available at https://snap.stanford.edu/data/com-Youtube.html.
This network has n = 1,134,890 nodes and m = 2,987, 624 edges, with a maximum degree of 28,754.
We estimate = 1 and a = 0 and the sizes of confidence sets are:

60%: 2 nodes  80%: 35 nodes  95%: 1874 nodes  99%: 16368 nodes .

The central subgraph of this network (shown in Figure 25b) also contains a large central cluster,
which may contain the most popular accounts on Youtube.
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S5.2 Random K roots analysis on air route network

We analyze an air route network (Guimera et al.; 2005) of n = 3,618 airports and m = 14,142
edges where two airports share an edge if there is a regularly scheduled flight between them. We
remove the direction of the edges and treat the network as undirected. The dataset is publicly
available at http://seeslab.info/downloads/air-transportation-networks/.

We perform our inference algorithm and display the top 12 community—trees in Figure 26. That
is, we take {Q1,...,Qk,, } and display the 12 that has the largest posterior probability of occuring.
The first 6 community—trees represent the same community, basically of all the major airports
in the world, centered at various potential root nodes (Paris, London, Moscow, Tokyo, Chicago,
Frankfurt).

The 7th community—tree comprise of regional airports in the remote Northwest Territories
province of Canada and it is centered at Yellowknife, which is the capital of the province. This is
not surprising because most regional airports in Northern Canada are very small and are built only
to connect remote settlements to larger nearby cities such as Yellowknife.

The 8th community—tree comprise of regional airports on various Pacific and Polynesian islands
and it is centered at Port Moresby, the capital of Papua New Guinea. The 9th community—tree is
the Australia/Southeast Asia cluster centered at Sydney. This result is sensible again because most
airports in the pacific islands are built only to connect the small islands to larger nearby cities such
as Port Moresby or Cairns. From a network respectively, these remote airports are reachable only
through a few cities such as Port Moresby.

The 10th to 12th community—trees comprise of airports in Alaska, many of which are re-
gional. The 10th community-tree is the whole Alaska cluster centered at Anchorage while the
11th community—tree and the 12th community—tree represent, respectively, Western Alaska (cen-
tered at Bethel, AK) and Northern Alaska (centered at Fairbanks, AK).

S5.3 Additional clusters for statistician co-authorship network

In this section, we give 18 additional clusters discovered on the statistican co-authorship network
in Figure 27, expanding the results given in Section 6.5 of the main paper.

S5.4 Sampler diagnostic information

In this section, we give detailed sampler diagnostic information of the Gibbs sampling algorithm
proposed in Section 4. We use a simulation setting where we generate a PAPER network with
n = 2000 nodes and m = 4000 edges with K = 1 and we also use the statistician co-authorship
network analyzed in Section 6.5, which has n = 2263 nodes and m = 4388 edges.

Recall that our Gibbs sampler produces a sequence of samples of a spanning tree Eﬁ{ ) and

ordering 71) for j = 1,2,...,J where J is the number of Gibbs outer iterations. We use Eﬁlj)
to compute the "sampled” posterior root probability QU)(-) = P(Il; = -|T, = 553)). For the

simulation setting, we then construct trace plot and auto-correlation plot based on the sequence
{Q(j )(true root) 3-]:1. For the statistician co-authorship network, we use construct the plots based
on {QY)( Raymond Carroll ) 'j]:1~ Figures 28a, 28b, 28¢, and 28d suggest that the sampler is able
to converge to the stationary distribution and has no significant autocorrelation.

As described in Section S3.4, to assess convergence, we run two parallel chains A and B with
corresponding posterior root probability estimates QA1) () = %Z}le QA () and QB (1) =
X E;-le QAU (-). We then compute the Hellinger distance d (Q4™/), QB(17)) and increase .J until
the distance is small enough. In Figures 29a and 29b, we show that dH(QA(l:J), QB(l‘J)) indeed
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Figure 26: Top 12 community—trees on the air route network; first 6 trees reflect the hub of major

global airports centered at different cities; tree 7 contains remote regional airports in the Northwest

Territories province of Canada; tree 8 contains remote regional airports in southeast Asian Pacific

islands; tree 9 contains Australia/Southeast Asia airports; tree 10 contains Alaskan airports while

tree 11 and 12 contain western Alaskan and Northern Alaskan airports respectively.

converges to 0 quickly as J increases.

We emphasize that the

chains A and B are initialized

with a uniformly random spanning tree and a uniformly random ordering on that tree so that the

initialization is guaranteed to be overdispersed.
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Figure 27: Additional clusters from the statistician co-authorship network. We hand label a subset.
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