
Parameterizing and Simulating from Causal Models

Robin J. Evans∗ and Vanessa Didelez†

May 18, 2023

Abstract

Many statistical problems in causal inference involve a probability distribution other than
the one from which data are actually observed; as an additional complication, the object of
interest is often a marginal quantity of this other probability distribution. This creates many
practical complications for statistical inference, even where the problem is non-parametrically
identified. In particular, it is difficult to perform likelihood-based inference, or even to simulate
from the model in a general way.

We introduce the ‘frugal parameterization’, which places the causal effect of interest at its
centre, and then builds the rest of the model around it. We do this in a way that provides a
recipe for constructing a regular, non-redundant parameterization using causal quantities of
interest. In the case of discrete variables we can use odds ratios to complete the parameteri-
zation, while in the continuous case copulas are the natural choice; other possibilities are also
discussed.

Our methods allow us to construct and simulate from models with parametrically specified
causal distributions, and fit them using likelihood-based methods, including fully Bayesian
approaches. Our proposal includes parameterizations for the average causal effect and effect
of treatment on the treated, as well as other causal quantities of interest.

1 Introduction

In many multivariate statistical problems, inferential interest lies in properties of specific function-
als of the joint distribution, such as marginal or conditional distributions; this means it is generally
desirable to specify a model for these functionals directly, with other parts of the distribution often
being regarded as nuisance parameters. In causal inference problems, the target of inference may
be a probability distribution other than the one that generates the observed data, but one which
corresponds to some sort of experimental intervention on that system.

Example 1.1. Consider the causal system represented by the graph in Figure 1(a), and suppose
we are interested in the causal effect of X on Y . For example, in a cohort of children X might be
a measure of their diet, Y their BMI, and Z an indicator of the education level of their parents.
Alternatively, Z could be an unobserved genetic factor.

This can be formulated as a prediction problem: “what would happen if we performed an experi-
ment in which we set X = x by external intervention?” Let the variables be distributed according
to P with some density p. Under the causal DAG assumptions of Spirtes et al. (2000) and Pearl
(2009), the conditional distribution of Y and Z after an experiment to fix X = x is

P ∗(Z = z, Y = y | X = x) ≡ P (Z = z) · P (Y = y | Z = z,X = x).

Note that the idealized intervention on X removes any dependence of X on the confounder Z,
but preserves the marginal distribution of Z, and the conditional distribution of Y given X,Z.
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Figure 1: (a) A causal model with three variables; (b) the same model after intervening on X.

This distribution is Markov with respect to the graph in Figure 1(b). Interest may then lie in the
marginal effect on just Y ,

P ∗(Y = y | X = x) =
∑
z

P (Z = z) · P (Y = y | Z = z,X = x), (1)

sometimes denoted P (Y = y | do(X = x)), or as the distribution of the potential outcome Yx.
Models of this quantity are known as marginal structural models (or MSMs, Robins, 2000).

For the purposes of simulation and likelihood-based inference it is often necessary to work with
the joint distribution P (X = x, Y = y, Z = z) directly, and it may be difficult to specify it so
that it remains compatible with a particular marginal model on (1). Indeed, providing a model
for the joint distribution parametrically may lead to a situation in which (1) cannot logically be
independent of the value of x, unless we impose the much stronger condition that Y ⊥⊥ X | Z.
More generally, specifying separate models for joint and marginal quantities—and ignoring the
information that is shared between them—can lead to incompatible or incoherent models, non-
regular estimators, and severe misspecification problems.

1.1 Contribution of this Paper

We will show that one can break down a joint distribution into three pieces: the distribution of ‘the
past’, pZX(z, x) := P (Z = z,X = x); the causal quantity of interest, p∗Y |X(y |x) := P ∗(Y = y |X =

x); and a conditional odds ratio, copula or other dependence measure ϕ∗YZ|X between Y and Z
given X. Suppose that the respective parameterizations for these quantities are called θZX , θ∗Y |X
and (with some abuse of notation) ϕ∗YZ|X ; we call (θZX , θ

∗
Y |X , ϕ

∗
YZ|X) a frugal parameterization. The

terminology is chosen because it is a direct parameterization of the causal quantity of interest, such
that there is no redundancy and any distribution with a positive joint density can be decomposed
in this manner. If we use smooth and regular‡ parameterizations of the three pieces then the
resulting parameterization of the joint model is also smooth and regular. We use a star (e.g. p∗ or
ϕ∗) to denote that the distribution or parameter is from the causal or interventional distribution,
and omit the star if the distribution or parameter is from the observational regime. Note that the
causal quantity p∗Y |X may be more general than just pY |X(y | do(x)); see Section 2.

Note that, in addition to providing a parameterization, the quantities θZX and θ∗Y |X will always
be variation independent ; we can also always choose ϕ∗YZ|X to be variation independent of the other

two parameters, unless we prefer to use (e.g.) a risk difference or risk ratio for interpretability. As
an example of the benefits of this property, we add a dependence for Y on covariates C via a link
function:

logitP ∗(Y = 1 |X = x,C = c) = µ+ αx+ βc+ γxc, for all c.

Now we can be certain that—regardless of the values of P (X = x, Z = z, C = c) and ϕ∗YZ|XC(y, z |x, c)—
there is a coherent joint distribution which possesses the required functionals. This could allow
us, for example, to model the causal effect of alcohol (X) on blood pressure (Y ) conditional on a
person’s genes (C), but marginally over factors such as socio-economic status (Z).

We start with a very simple example, to illustrate exactly what we propose to do.

‡That is, such that the model is differentiable in quadratic mean and has positive definite Fisher Information
Matrix. See Appendix A for a formal statement.
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Example 1.2. Suppose that (Z,X, Y )T follow a multivariate Gaussian distribution with zero
mean, and that we wish to specify that Y | do(X = x) is normal with mean βx and variance σ2.
To complete the frugal parameterization we must specify ‘the past’ (i.e. pZX) and a dependence
measure between Y and Z conditional upon X (ϕ∗YZ|X). We therefore take Z and X to be nor-

mal with mean 0 and variances τ2, υ2 respectively and correlation ρ, and assume the regression
parameter for Y on Z (in the regression that includes X) is α; note that we could alternatively
specify the covariance or partial correlation between Z and Y . Hence we have θZX = (τ2, υ2, ρ),
θY |X = (β, σ2) and ϕ∗YZ|X = α. Using this information, one can directly compute the distribution

of (Z, Y )T after the intervention(
Z
Y

)∣∣∣∣ do(X = x) ∼ N2

((
0
βx

)
,

(
τ2 ατ2

ατ2 σ2

))
,

and consequently the observational joint distribution of (Z,X, Y )T is:ZX
Y

 ∼ N3

0,

 τ2 ρτυ ατ2 + βρτυ
ρτυ υ2 βυ2 + αρτυ

ατ2 + βρτυ βυ2 + αρτυ σ2 + β2υ2 + 2ρτυαβ

 .

We may do this for any value of ρ ∈ (−1, 1), α, β, and σ2, τ2, υ2 > 0 provided that σ2 > α2τ2,
and indeed we can obtain any trivariate Gaussian distribution from these parameters. Note that,
though the last inequality implies there is variation dependence in this case, we could easily choose
ϕ∗YZ|X to be (for example) the partial correlation between Z and Y given X, and then there would
be no such constraint.

Once we are able to construct the joint distribution, simulation is trivial. We take the Cholesky
decomposition of the covariance matrix and apply the lower triangular part to independent stan-
dard normals. Likelihood-based inference is also straightforward once the covariance is known.

In this example we took our three pieces, pZX (a bivariate normal), p∗Y |X (a linear regression) and

ϕ∗YZ|X (a regression parameter), and used them to obtain pZXY . Note that our parameterization
was chosen so that every quantity of interest is specified precisely once, and the overall model is
saturated (i.e. any multivariate Gaussian distribution can be deconstructed in this manner, just
by varying the parameters). This contrasts with the alternative of specifying Σ directly, as this
does not give a simple explicit model for the causal effect.

The above example may seem somewhat trivial, but the main contribution of this paper is that
we will do this in a much more general fashion, enabling simulation from a wide range of causal
models.

Example 1.3. Now suppose that Z and Y are binary with X still continuous, and we continue
to work with the model in Figure 1(a). This time we specify that

logitE[Y | do(X = x)] = β0 + β1x;

in addition suppose EZ = q, that X | Z = z ∼ N(γz, σ2), and that the log odds ratio between Y
and Z conditional on X = x is ϕ (we could also allow ϕ to vary with x).

The joint distribution in this example is considerably more difficult to write in a closed form
than the one in Example 1.2. However, in this paper we will show that we may: (i) specify
this model using the parameters just given; (ii) simulate samples from the distribution described;
and (iii) give a map for numerically evaluating the joint density and fit such a model to data
using likelihood-based methods. Furthermore, we can do all this (almost) as easily as with the
multivariate Gaussian distribution. Note that because logistic regression is not collapsible, this
model illustrates why we should not just provide pY |XZ to compute the joint distribution: doing
so could lead to a very different marginal model for Y | do(X) than the one we chose.

As we show, the method is particularly applicable to survival models and dynamic treatment
models where we marginalize over the time-varying confounders; both of these are widely used
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but are difficult to simulate from (Havercroft and Didelez, 2012; Young and Tchetgen Tchetgen,
2014). In addition, it allows Bayesian and other likelihood-based methods to be applied coherently
to marginal causal models (Saarela et al., 2015).

Though Examples 1.1–1.3 are presented for univariate Gaussian or discrete variables, in fact the
results are entirely general and can be adapted to vectors of arbitrary cardinality and general
continuous or mixed variables; implementation does become more complicated in such situations,
however. As noted by Robins (2000), calculation of the likelihood becomes a ‘computational
nightmare’ for marginal structural models with continuous variables, but we show that copulas
can be used to overcome this problem. In the sequel we denote the observational joint density by p
with, for example, pY |X(y |x) meaning the conditional density of Y given X. In the discrete case,
this is just the probability mass function.

1.2 Existing Work

A commonly used alternative to likelihood-based approaches are generalized estimating equations
(GEEs) or semiparametric methods, as these do not require full specification of the joint distri-
bution (Diggle et al., 2002). However, neither method allows for simulation from the model, and
they may be less powerful than likelihood-based methods.

Robins (1992) provides an algorithm for simulating from a Structural Nested Accelerated Failure
Time Model (SNAFTM), a survival model in which one models survival time as an exponential
variable whose parameter varies with treatment. This is adapted by Young et al. (2008) to sim-
ulate from a Cox MSM model. Young et al. (2009) consider a special case of a Cox MSM that
approximates a SNAFTM and also a SNCFTM (special cases of the structural nested model—see
Section 7). Keogh et al. (2021) give a method for simulating from Cox MSMs using an additive
hazard model. Havercroft and Didelez (2012) consider the problem of specifying (and thus char-
acterizing) models such that, for simulation and educational purposes, bias due to selection effects
and blocking mediation effects will be strong if a näıve approach is used.

Richardson et al. (2017) give a variation independent parameterization for structural equation
models by using the odds product; this also allows for fully-likelihood based methods. This is
extended by Wang et al. (2022) to the Structural Nested Mean Model, which we will meet in
Section 7. The main difference between this work and ours is that it is not obvious how to extend
their approach to other models and to continuous variables.

Indeed, much of the trend in causal inference is towards structural equations models (SEMs)
in which each variable is modelled as a function of all previous variables and a stochastic noise
term (Peters et al., 2017). In Example 1.3 this would have meant specifying pY |ZX , which would
not have allowed us to directly model pY |X(y | do(x)). In particular, the work of Pearl generally
assumes that causal distributions should be conditional on all previous variables, while allowing
for some conditional independence constraints (see, for example, Peters et al., 2017, and large
sections of Pearl, 2009). We certainly do not wish to single these authors out for criticism (indeed
the authors of this paper have often considered such approaches), but they do seem to be less
useful in epidemiological or other medical contexts, in which conditional independences are often—
though not always—implausible assumptions. In such a context, one has to specify distributions
conditional on the entire past, which may be very difficult if there are a large number of relevant
variables.

We view our approach as complementary to the structural equation perspective, since each has
advantages in terms of what assumptions can be expressed and the causal questions that can be
easily answered within the framework. SEMs and the theory around them have received much
attention; this work starts to fill in the gaps relating to marginal models.
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Figure 2: The causal model from Havercroft and Didelez (2012).

1.3 Causal Models

Throughout the paper we will have a running example based on Figure 2; each of these examples
is labelled with a prefix ‘R’.

Example R1. The model in Figure 2 arises in dynamic treatment models and is studied in
Havercroft and Didelez (2012). The variables A and B represent two treatments and so play
the role of X from Example 1.1; the second treatment B depends on both the first (A) and an
intermediate outcome L. The variable U is ‘hidden’ or latent, and therefore identifiable quantities
are functions of pALBY . A typical quantity of interest is the distribution of the outcome Y after
interventions on the two treatments A and B. Under the assumption of positivity and the causal
structure implied by the graph, this is identified by the g-formula of Robins (1986) as

pY |AB(y | do(a, b)) :=
∫
pY |ALB(y | a, ℓ, b) · pL|A(ℓ | a) dℓ. (2)

Havercroft and Didelez note that after specifying a model for pY |AB(y | do(a, b)), it is difficult to
parameterize and simulate from the full joint distribution, partly because of the complexity of the
relationship (2). They are only able to simulate from the special case of Figure 2 in which L has
no direct effect on Y , so any dependence is entirely due to the latent variable. We remark that we
could replace instances of ℓ in (2) with (u, ℓ) and obtain the same result, which means that the
role of Z could be taken by either L alone or the pair (U,L).

For related reasons, the model in Figure 2 is also the subject of the so-called g-null paradox
(Robins and Wasserman, 1997) when testing the hypothesis of whether pY |AB(y | do(a, b)) depends
upon A. This arises because seemingly innocuous parameterizations of the conditional distributions
pY |ALB(y | a, ℓ, b) and pL|A(ℓ | a) (e.g. a linear and a logistic regression) lead to situations where the
null hypothesis can almost never hold: that is, it is impossible for pY |AB(y | do(a, b)) not to depend
upon A unless either L or Y is completely independent of A. The reason for the ‘paradox’ can
be understood as a problem of attempting to specify the relationship between Y and A in two
different and potentially incompatible ways.

Note that the g-null paradox is not the same as the presence of singularities§ or non-collapsibility,
but rather it is a result of non-collapsibility over a marginal model that possibly leads to singular-
ities.

Example R2. Considering Figure 2 again, suppose that we choose Y to depend linearly on
A, L and B (including any interactions we wish), and that L is binary and we use a logistic
parameterization for its dependence upon A. Then, if A takes four or more distinct values, it is
essentially impossible for H0 : Y ⊥⊥ A | do(B) to hold in such a distribution, even if Y doesn’t
depend directly upon A, L or B. This is because

E[Y | do(a, b)] =
1∑

ℓ=0

pL|A(ℓ | a) · E[Y | a, ℓ, b]

= β0 + β1a+ β3b+ expit(θ0 + θ1a)β2,

§See Appendix A for a formal definition.
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so the only way for this quantity to be independent of a variable A with at least four levels is
for β1 = 0 and either θ1 = 0 or β2 = 0. This ‘union’ model is singular (i.e. not regular) at
θ1 = β1 = β2 = 0, and being in it implies a much stronger null hypothesis (that either Y ⊥⊥ A,L | B
or L ⊥⊥ A in addition to the causal independence) than the one we are interested in investigating.

Generally speaking, if we try to state a model for pY |ALB as well as requiring that pY |AB(y | do(a, b))
does not depend on A, we effectively try to specify the A-Y and B-Y relationships in two different
margins; in the case above these margins are incompatible, leading to the singularity. This is
avoided by constructing a smooth, regular and variation independent parameterization, without
any redundancy. We show that, in fact, a frugal parameterization of the joint distribution exists
that separates into variation independent parameterizations of the quantities

pALB(a, ℓ, b), pY |AB(y | do(a, b)), and ϕ∗LY |AB(ℓ, y | a, b).

This entirely avoids the g-null paradox when considering hypotheses about pY |AB(y | do(a, b)), since
variation independence means that it may be freely specified. In addition this parameterization is
such that one can logically specify any model with a joint density in this manner.

Note that the example above does not give a separate specification of the dependence of Y on L
that is causal, and the spurious dependence due to the latent parent U : both kinds of dependence
are tied up in the association parameter ϕ∗LY |AB . An alternative is to explicitly include U in the
model, leaving us with

pUALB(u, a, ℓ, b), pY |AB(y | do(a, b)), and ϕ∗UL,Y |AB(u, ℓ; y | a, b),

where ϕ∗UL,Y |AB has to model the dependence between Y and (U,L), after intervention on A,B.

Of course, some of these quantities will be unidentifiable,¶ but we will want to be able to simulate
how well the effects of A and B on Y are estimated in the presence of unobserved confounding of
various strengths.

Remark 1.4. Statistical causality is represented using a number of different overlapping frame-
works, including potential outcomes (Rubin, 1974), causal directed graphs (e.g. Spirtes et al.,
2000), decision theory (Dawid and Didelez, 2010), non-parametric structural equation models (e.g.
Pearl, 2009), Finest Fully Randomized Causally Interpretable Structured Tree Graphs (Robins,
1986) and their implementation as Single World Intervention Graphs (Richardson and Robins,
2013). The discussions in this paper are broadly applicable to any of these frameworks. For
notational purposes we choose to use Pearl’s ‘do(·)’ operator to indicate interventions. For exam-
ple, P (Y = y |A = a, do(B = b)) refers to the conditional distribution of Y given A = a under
an experiment where B is fixed by intervention to the value b. We generally abbreviate this to
pY |AB(y | a, do(b)). The same quantity in the potential outcomes framework would generally be
denoted by P (Yb = y |Ab = a).

Though slightly more verbose, the do(·) notation has the advantage that the quantity is more
immediately seen to be a conditional distribution indexed by both a and b, which is critical to our
method. We will exploit the fact that a do(X = x)-intervention can be obtained by conditioning
on X = x after randomizing X, i.e. randomly generating it from an arbitrary (but not trivial)
distribution p∗X(x). Note also that it is ambiguous from notation alone whether pY |X(y | do(x)) is
identifiable or not, since it depends upon both the causal model being postulated and the available
data; this problem also arises with the other frameworks.

Remark 1.5. In applications, when causal model are to be fitted on actual data, conditions for
identifiability must be met. These are well-known for all models we consider: they essentially
consist of the appropriate (possibly sequential) versions of causal consistency, positivity and con-
ditional exchangeability (or no unmeasured confounding) given the measured covariates (Hernán
and Robins, 2020). As we are here interested in properties of causal models and how to simulate
from them, we will take identification as given.

The remainder of the paper is structured as follows: in Section 2 we provide our main assumptions
and discuss issues such as how we might choose a dependence measure. Section 3 contains the

¶Specifically, pU|ALB(u | a, ℓ, b) and ϕ∗
UL,Y |AB

(u, ℓ; y | a, b).
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main result outlined in the introduction. In Section 4 we describe how to simulate from our models
and give a series of examples, and in Section 5 we show how to fit these models using maximum
likelihood estimation. Section 5.2 contains an analysis of real data on the relationship between fibre
intake, a polygenic risk score for obesity and children’s BMI. Section 6 discusses an application of
the frugal parameterization to survival models, and Section 7 contains an extension to models in
which the causal parameter is different for distinct levels of the treatment. We note that Sections
6 and 7 are more technical, and not necessary for the reader to gain insight into the main ideas of
the paper. We conclude with a discussion in Section 8.

2 The Frugal Parameterization

Here we present a formalization of the ideas in the introduction. Suppose we have three random
vectors (Z,X, Y ) ∈ Z × X × Y, where Y is an outcome (or set of outcomes) of interest, and X,Z
consist of relevant variables that are considered to be causally prior to Y ; this may be because
they are temporally prior to Y , but that is not strictly necessary. There is no restriction on the
state-spaces of these variables provided that they admit a joint density p := pZXY with respect to a
product measure µZ · µX · µY , and satisfy standard statistical regularity conditions. In particular,
each of X, Y and Z may be finite-dimensional vector valued, and either continuous, discrete or a
mixture of the two. The fact that each of these variables may be vector valued, and that there is
no fixed ordering on variables in X and Z means the method is considerably more flexible than it
might at first appear.

Throughout this paper we use the notation pX to denote the marginal density of the random
variable X, and θX to denote the parameter in a model for this distribution; similarly pY |X and
θY |X relate to the distribution of Y conditional upon X. We will need to consider marginal and
conditional distributions that are not obtained by the usual operations; for example, a marginal
distribution taken by averaging over a population with a different distribution of covariates. We
will typically denote such non-standard distributions by indexing with a star: e.g. p∗Y |X or θ∗Y |X .

We use ϕYZ to denote parameters that describe the dependence structure of a joint distribution;
specifically, such that when combined with the relevant marginal distributions they allow us to
recover an entire joint distribution. Examples include odds ratios or the parameters of a particular
copula. We also consider quantities that provide such a dependence structure conditional on a
third variable, and denote this as ϕYZ|X . Again, if the dependence is in p∗ZXY (defined in the next
subsection) then we will write this quantity as ϕ∗YZ|X .

We will assume that we have three separate, smooth and regular parametric models for pZX , pY |X
and ϕYZ|X , with corresponding parameters θZX , θY |X and ϕYZ|X . In this sense our model can be
equated with θ := (θZX , θY |X , ϕYZ|X), and for this reason we will often refer to θ as ‘the model’.
For convenience, we will refer to pZXY as the observational distribution, and p∗ZXY as the causal
distribution; we do this even though in other possible contexts p∗ZXY might not correspond to a
standard causal intervention on pZXY .

2.1 Cognate Distributions and the Frugal Parameterization

A parameterization is said to be frugal if it consists of at least three parts: the distribution of
‘the past’; a (possibly) reweighted quantity relating to the distribution of the outcome; and then a
conditional association measure that, combined with the first two pieces, smoothly parameterizes
the joint distribution.

To be explicit, we require that the frugal parameterization includes a parameter θ∗Y |X that models
a conditional distribution of the form

p∗Y |X(y |x) =
∫
Z
pY |ZX(y | z, x) · w(z |x) dz, x ∈ X , y ∈ Y, (3)
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for some kernel (i.e. conditional density) w(z |x). We call a conditional distribution that can be
written in the form (3) a cognate distribution (to pY |X). Note that cognate distributions include
the ordinary conditional as a special case, since setting w = pZ|X we obtain∫

Z
pY |ZX(y | z, x) · pZ|X(z |x) dz = pY |X(y |x).

Common causal quantities obtained by re-weighting also satisfy the definition; for example, given
the causal model implied by Figure 1(a) we have

pY |X(y | do(x)) ≡
∫
Z
pY |ZX(y | z, x) · pZ(z) dz.

In other words, this formulation allows for adjustment by a subset of the previous variables. Terms
to derive the effect of treatment on the treated (ETT) also satisfy the definition by using the kernel
w(z) = pZ|X(z | 1); the ETT considers the difference between E[Y |X = 1, do(X = x)] for x = 1, 0,
and these can be written as

E[Y |X = 1, do(X = x)] =

∫∫
y · pY |ZX(y | z, x) · pZ|X(z | 1) dy dz.

The effect of treatment on the control individuals (ETC) is analogously defined using pZ|X(z | 0).

It is straightforward to check that p∗Y |X is itself a kernel for Y given X. One may think of p∗Y |X
as being a conditional distribution taken from the larger distribution p∗ZXY , where

p∗ZXY (z, x, y) = pZXY (z, x, y) ·
p∗ZX(z, x)

pZX(z, x)

= pZXY (z, x, y) ·
p∗X(x) · w(z |x)
pZX(z, x)

= p∗X(x) · w(z |x) · pY |ZX(y | z, x).

Note that pZXY and p∗ZXY share a conditional distribution for Y given X,Z—only the marginal
distribution of Z and X has been altered. As noted in Remark 1.4 the marginal distribution p∗X is
essentially arbitrary, though later we may need it to satisfy some of Assumptions A2–A5 in order
to apply our main results.

Definition 2.1. A smooth, regular parameterization of random variables (Z,X, Y ) is said to be
frugal with respect to some kernel p∗Y |X of the form (3), if it consists of separate parameterizations

of: (i) the marginal distribution of Z,X; (ii) the kernel p∗Y |X ; and (iii) a conditional association
measure ϕ∗YZ|X for Y and Z given X.

Recall that the formal definitions of ‘smooth’ and ‘regular’ parameterizations are given in Ap-
pendix A.

2.2 Variation Independence

Take a set Θ and two functions defined on it ϕ, ψ. We say that ϕ and ψ are variation independent
if (ϕ × ψ)(Θ) = ϕ(Θ) × ψ(Θ); i.e. the range of the pair of functions together is equal to the
Cartesian product of the range of them individually. A variation independent parameterization
helps to ensure that the parameters characterize separate, non-overlapping aspects of the the joint
distribution. Note that we may sometimes refer to sets of distributions being variation independent,
and in this case we are really referring to their respective parameterizations.

Note that the parameterizations of pZX and p∗Y |X are guaranteed to be variation independent,

since there is always a parameter cut between marginal and conditional pieces of this form (we
discuss this in Section 5). The following assumption will not actually be required for any of our
results, but we note that, if satisfied, it makes interpretation and prediction somewhat easier.
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A1. Given a frugal parameterization θ = (θZX , θY |X , ϕYZ|X), the parameter ϕYZ|X is jointly varia-
tion independent of θZX and θY |X .

We will see that this assumption is satisfied by both conditional odds ratios and copulas.

2.3 Choices of the Association Parameter

Now that we have formally defined the parameterization, let us return to the original problem.
We want to be able to (i) construct, (ii) simulate from, and (iii) fit a model using the frugal
parameterization. In order to do this we have to make some choices. We take the form of w and a
model for p∗Y |X as given, because they are chosen by the analyst using subject matter considerations;

this leaves us to select a parametric family pZX for (Z,X), and a conditional association parameter
within the causal model, ϕ∗YZ|X .

This raises the question of how one should choose the association parameter. In general there are
many possibilities: a risk difference or ratio, an odds ratio, or something else. However, some of
these objects have nicer properties than others. In the case of binary Y and Z the natural choice
for such an object is the conditional odds ratio

ϕ∗YZ|X(x) ≡
p∗YZ|X(1, 1 |x) · p∗YZ|X(0, 0 |x)
p∗YZ|X(1, 0 |x) · p∗YZ|X(0, 1 |x)

,

which is known to be variation independent of the margins p∗Y |X and p∗Z|X , and also has the property

that if p∗ZXY is multiplied by any function of (x, z) or (x, y) it does not change. More specifically,
note that p∗ZXY = pZXY · p∗ZX/pZX , and hence

ϕ∗YZ|X(x) =
p∗YZ|X(1, 1 |x) · p∗YZ|X(0, 0 |x)
p∗YZ|X(1, 0 |x) · p∗YZ|X(0, 1 |x)

=
pYZ|X(1, 1 |x) · pYZ|X(0, 0 |x)
pYZ|X(1, 0 |x) · pYZ|X(0, 1 |x)

= ϕYZ|X(x). (4)

In other words, the conditional odds ratio for the causal and observational distributions are the
same, and this does not hold for other conditional association parameters (Edwards, 1963).

This definition and the invariance result (4) extends to distributions over any statespace un-
der mild conditions (Osius, 2009), and—in theory—the joint distribution can be recovered from
the odds ratio and marginal distributions using the iterative proportional fitting (IPF) algorithm
(Bishop, 1967; Darroch and Ratcliff, 1972; Csiszár, 1975; Rüschendorf, 1995). Other fitting ap-
proaches are discussed by Tchetgen Tchetgen et al. (2010). Note that, for general continuous
distributions, it is not possible to implement the algorithm in practice in most cases, because
the intermediate distributions will not have a closed form; an obvious exception to this is the
multivariate Gaussian distribution.

Alternative possibilities include the risk difference and risk ratio, though these lack the vari-
ation independence in A1 possessed by the odds ratio, unless combined with the odds product
as in Richardson et al. (2017). We will use these difference and ratio contrasts in Section 7, to
parameterize the ‘blip’ functions in a structural nested mean model.

Proposition 2.2. If X, Y and Z are finite categorical variables and have strictly positive condi-
tional distribution pYZ|X > 0, then using smooth parameterizations of the marginal distributions
pZX and pY |X , together with the conditional odds ratio ϕYZ|X is a frugal parameterization that
satisfies assumption A1. Indeed, X can also be a continuous or mixed variable (c.f. Example 1.3).

Proof. This follows from the results of Bergsma and Rudas (2002).

Example 2.3. For multivariate Gaussian random variables, or other distributions that are defined
by their first two moments, the partial correlation ρYZ|X ≡ Cor(Y,Z |X) satisfies the conditions
for being a conditional association parameter ϕYZ|X , in the sense that when combined with the
marginal distributions for each of Y and Z given X, one can recover the joint conditional distri-
bution pYZ|X .
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Example 2.4. An alternative to the odds ratio for general continuous variables is to use a copula,
which separates out the dependence structure from the margins by rescaling the variables via their
univariate cumulative distribution functions. A multivariate copula is a cumulative distribution
function with uniform marginals; i.e. a function C : [0, 1]d → [0, 1] which is increasing and right-
continuous in each argument, and such that C(1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0, 1] and
i ∈ {1, . . . , d}.

Recall that, for a continuous real-valued random variable Y with CDF FY , the random variable
U ≡ FY (Y ) is uniform on (0, 1). The bivariate copula model for Y and Z ∈ R is then

CYZ(u, v) ≡ P (FY (Y ) ≤ u, FZ(Z) ≤ v), u, v ∈ [0, 1].

There is a one-to-one correspondence between copulas and multivariate continuous CDFs with
uniform marginals. By Sklar’s Theorem (Sklar, 1959, see also Sklar, 1973), any copula can be
combined with any collection of continuous margins to give a joint distribution, via (in our bivariate
example)

FYZ(y, z) ≡ C(F−1
Y (y), F−1

Z (z)), y, z ∈ R.

We will assume that the copula is parametric, and then ϕYZ|X represents the parameters of the
particular family of copulas.

Proposition 2.5. If Y and Z are continuous with a positive conditional distribution for each
x ∈ X , then any smooth and regular parameterization of their marginals pZX and pY |X together
with a smooth and regular conditional copula CYZ|X is a frugal parameterization that satisfies
assumption A1.

Proof. This follows from the results of Sklar (1973).

Note that the copula is only used to model the interaction, thus allowing us to retain the simple
interpretation of the marginal model p∗Y |X in terms of an interventional distribution. In contrast to

the odds ratio note that conditional copulas do not satisfy (4), because the copula also depends upon
the cumulative distribution function of the corresponding margins; this is a slight disadvantage in
comparison to the odds ratio. We will return to these examples in Section 4.

Example 2.6. We can also use copulas to model variables in a more flexible way by including
categorical variables. Suppose that we have a mixture of continuous and binary variables among
the elements of Z and Y . Then we might choose to model them using an approach analogous to
that of Fan et al. (2017), who propose a Gaussian copula model that is dichotomized for the binary
components. Their estimation methods show that the resulting joint distribution is a smooth
function of the parameters. This model, combined with smooth marginal models will also be
frugal and satisfy A1. We use this approach in our data analysis example in Section 5.2.

More general versions of the frugal parameterization are given in Sections 6 and 7, though again
we note that the rest of the paper can be read without reference to those sections.

3 Main Result

We now give the main result outlined in the introduction: given a weight function w, a pa-
rameterization θ = (θZX , θY |X , ϕYZ|X) of pZXY induces a corresponding frugal parameterization
θ∗ = (θZX , θ

∗
Y |X , ϕ

∗
YZ|X), also of pZXY . In particular, we can choose any parametric model for any

cognate distribution p∗Y |X , and use it to construct a smooth parameterization of the joint density.
In other words, in terms of parameterization there is no essential difference between choosing a
model for p∗Y |X or for the ordinary conditional distribution pY |X . When we do this, the smoothness

and regularity of the parameterization of the observational model (θY |X) as well as its variation
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independence to θZX and—possibly—the association parameters, is preserved in the new parame-
terization of pZXY . The Theorem 3.1 below formalizes this.

We first need to introduce a couple of additional assumptions. Recall that the functionals θY |X
and ϕYZ|X for pZXY have an identical form to the functionals θ∗Y |X and ϕ∗YZ|X for p∗ZXY . We will
assume that p∗ZX = p∗X · w is smoothly and regularly parameterized by a function of θZX , and a
relative positivity of the observational distribution. Recall also that the analyst chooses p∗Y |X and
w based on subject matter considerations.

A2. The product p∗ZX = p∗X ·w has a smooth and regular parameterization ηZX := ηZX(θZX), where
ηZX is a twice differentiable function with a Jacobian of constant rank.

A3. pZX is absolutely continuous with respect to p∗ZX at the true distribution pZXY .

To clarify, we have two separate parameterizations of pZXY . The first, θ, corresponds to using the
ordinary conditional distribution pY |X in our frugal parameterization and ‘default’ weight function
w0(z |x) = pZ|X(z |x), whereas the second θ∗ uses a cognate distribution p∗Y |X for some other
weight w. As a note of caution, the two models for pZXY induced by θ and θ∗ are not generally the
same, because they apply to different functionals of pZXY ; if the models are both saturated then the
sets of distributions themselves will be the same, but the parameters have different interpretations,
and their values are therefore generally different.

Theorem 3.1. Let pZXY be a distribution parameterized by θ := (θZX , θY |X , ϕYZ|X) with weight
function pZ|X , and w a kernel satisfying A2; we also assume that A3 holds.

Then θ is frugal w.r.t. pY |X if and only if θ∗ := (θZX , θ
∗
Y |X , ϕ

∗
YZ|X) is also frugal w.r.t. p∗Y |X . In

addition, if ϕYZ|X satisfies A1 and ηZX(ΘZX) ⊆ ΘZX , then ϕ∗YZ|X also does.

Proof. First, note that by definition, either parameterization can use θZX to obtain pZX . Then
combining with A2 we can obtain w · p∗X as a smooth function of ηZX(θZX). Then note that by A3
we have

p∗ZXY = pZXY
p∗ZX
pZX

= pZXY
w · p∗X
pZX

, (5)

so given that the fraction here is a smooth function of θZX from either parameterization, it is clear
that we can obtain p∗ZXY smoothly from θ∗ if and only if we can obtain pZXY smoothly from θ.
This proves that θ is a smooth and regular parameterization if and only if θ∗ is.

For A1, note that if ϕYZ|X is variation independent of θZX and θY |X , then we also have that ϕ∗YZ|X
is variation independent of ηZX(θZX) and θ∗Y |X , because this is just A1 applied to the (possibly)
smaller set of distributions p∗ZXY . Then notice that modifying the value of θZX in such a way that
keeps the value of ηZX the same will have no effect on the possible values of ϕ∗YZ|X , and hence A1
holds for θ∗.

Remark 3.2. The previous result tells us that, given a suitable dependence measure ϕ, we can
propose almost arbitrary (i.e. provided that they satisfy the assumptions indicated in the Theorem)
separate parametric models for each of the three quantities pZX(z, x), p∗Y |X(y |x) and ϕ∗YZ|X(y, z |x),
and be sure that there exists a (unique) joint distribution pZXY (z, x, y) compatible with that
collection of models. Of course, this leaves open the question of how we should compute that joint
distribution.

The requirement that the image of ηZX is contained within the set of possible distributions pZX
is a very mild condition. In addition, if we use a copula or odds ratio as the conditional association
measure the implication always holds, regardless of this assumption.

Example R3. Picking up Example R1 again and, for now, consider only the observed variables
(though see Example R7 in Appendix C for details on how to simulate from all the variables).
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Take Z = L and X = (A,B), then Theorem 3.1 says that we can parameterize the model using
parametric models of the three pieces

pALB(a, ℓ, b) pY |AB(y | do(a, b)) ϕ∗LY |AB(ℓ, y | a, b). (6)

For convenience, we choose to factorize pALB according to the orderingA,L,B. SetA ∼ Bernoulli(θa),
L is conditionally exponentially distributed with mean E[L | A = a] = exp(−(α0 + αaa)), and

B | A = a, L = ℓ ∼ Bernoulli(expit(γ0 + γaa+ γℓℓ+ γaℓaℓ)).

Let us suppose that Y is normally distributed under the intervention on A,B, with mean

E[Y | do(A = a,B = b)] = β0 + βaa+ βbb+ βabab

and variance σ2. Let ϕ∗LY |AB be a conditionally bivariate Gaussian copula, with correlation pa-
rameter given by some function ρab of a and b. This parameterization is frugal and satisfies A1.

In addition, note that this approach entirely circumvents the g-null paradox discussed in Example
R2, because the marginal dependence of Y on A (after intervention on A and B) is uniquely and
explicitly encoded by the parameters βa, βab.

4 Sampling from a marginal causal model

In this section we will consider how to sample from pZXY using a frugal parameterization θ∗,
sometimes analytically, but more commonly via the method of rejection sampling. Note that, now
we have constructed a valid parameterization, we will no longer need to refer to the model on pZXY

defined by θ. From this point on, we only discuss the model on pZXY parameterized by θ∗, and
the corresponding model on p∗ZXY that replaces θZX with ηZX(θZX).

We first review how one should go about choosing such a parameterization.

1. Choose the quantity p∗Y |X which you wish to model, or of which you wish to model a function,

and select a parameterization θ∗Y |X (this should include the quantity of interest).

2. Determine the kernel w over which we need to integrate pY |ZX in order to obtain p∗Y |X , and
a dummy marginal distribution p∗X over X. This should not be degenerate, and for efficient
sampling should be similar in form to the observational margin pX.

3. Introduce a parameterization θZX of pZX , such that p∗ZX = w · p∗X is smoothly and regularly
parameterized by a twice differentiable function ηZX of θZX .

4. Choose a ‘suitable’ parameterization ϕ∗YZ|X of the dependence in Z-Y conditional upon X in
the causal distribution p∗.

The three pieces θZX , θ∗Y |X and ϕ∗YZ|X will make up the frugal parameterization. To make point

3 more concrete, in Example 1.3 we can set θZX to be the combination (q, γ, σ2), and then take
p∗X ∼ N(0, 2σ2); this ensures it will have heavier tails than pX|Z ∼ N(γz, σ2) which, as we will see
in Section 4.2, is crucial for sampling.

For point 4, the question of suitability of the dependence measure, we would wish to consider: (i)
whether the relevant variables can be modelled with the particular dependence measure selected
(e.g. odds ratios are suitable for discrete variables, but not so useful in practice for continuous
ones); (ii) the computational cost of constructing the joint distribution; (iii) whether we want the
dependence measure to be variation independent of its baseline measure; if so that would rule
out risk ratios and differences. For a larger model with a vector valued X, we might wish to fit
different dependence measures for each treatment variable; see Section 7 for an example of this
with a Structural Nested Mean Model.
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4.1 Direct Sampling

For fully discrete or multivariate Gaussian models, it is possible to compute p∗ZXY and then
‘reweight’ by pZX/p

∗
ZX to obtain the distribution pZXY in closed form. As noted in Proposi-

tion 2.2, in the discrete case this is straightforward using (conditional) log odds ratios to obtain
a frugal parameterization of the distributions. For example, if Y and Z are both binary, taking
values in {0, 1}, we can use

log ϕYZ|X(x) := log
pYZ|X(1, 1 |x) · pYZ|X(0, 0 |x)
pYZ|X(1, 0 |x) · pYZ|X(0, 1 |x)

.

For further details, including what happens if there are more than two levels to Y or Z, see Bergsma
and Rudas (2002). As noted in (4), a nice property of the odds ratios as the association parameter
is that their values in the observational and causal distributions are always the same.

Example R4. Let us apply this to a discrete version of Example R3 from Havercroft and Didelez
(2012); we know that the objects in (6) are sufficient to define the model of interest. If all the
variables are binary, then we start with a parameterization of pALB and p∗Y |AB using (conditional)

probabilities, and ϕ∗LY |AB(= ϕLY |AB) using conditional odds ratios.

Assume, for example, that

Y | do(A = a,B = b) ∼ Bernoulli(expit(−1 + a+ ab)),

with L | A = a ∼ Bernoulli(expit(2a− 1)), and log ϕLY |AB(a, b) = 1+a− 2b+ab. Then specifying,
for instance, B | A = a, L = ℓ ∼ Bernoulli(expit(1 − a − 2ℓ + aℓ)) implies that the ordinary
conditional pY |AB is, by a direct calculation,

Y | A = a,B = b ∼ Bernoulli(expit(−0.245 + 0.432a− 0.500b+ 0.846ab)).

Note that the ‘observational’ conditional parameters are quite different from their causal counter-
parts.

4.2 Sampling By Rejection

In most realistic situations the data cannot be modelled as entirely discrete or multivariate Gaus-
sian. In such cases we suggest simulating from a distribution constructed analogously to the causal
model, and then using rejection sampling to modify the marginal distribution of X and Z and
obtain data from the corresponding observational distribution. The idea of rejection sampling is
very simple. Suppose we have two distributions: a target p that is difficult to sample from, and a
proposal q that is both easy to sample and dominates p, in the sense that there is some M such
that p/q ≤M in a p-almost sure sense; then we can obtain independent samples from q and reject
only those samples X for which p(X)/q(X) > M · U , where U is an independent uniform random
variable on (0, 1). The samples that are not rejected are then distributed independently from p
(see, for example, Robert and Casella, 2004, Chapter 2).

We might hope that, since p∗ZXY is relatively easy to sample from, then we would find that p∗ZX =
w · p∗X dominates pZX ; unfortunately this is generally not the case and is extremely implausible
unless Z is discrete. However, a weaker assumption is sufficient.

A4. The set Z can be partitioned into a countable number of bins B = {Bi} such that, for each i,
there pZX -almost surely exists Mi with pZX(z, x)/p∗ZX(z, x) ≤Mi for all x ∈ X , z ∈ Bi.

The significance of this assumption is that given n i.i.d. realizations from pZ we can then partition
them into B, and target obtaining the same number of observations via a local rejection sampling
scheme in each bin. Note that this original sample of Zs is never used after determining the number
of observations within each bin.
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Of course, to use this assumption we must be able to sample from p∗ZXY , and the feasibility of this
depends upon the particular model; however it is generally a much easier condition to satisfy than
being able to sample from pZXY directly given that p∗Y |X is already specified. With a copula, it is
essentially trivial: we can just sample directly from the copula, and then use inversion to ensure
the margins are correct (Clifford, 1994).

We note that if the weighting is sometimes particularly heavy or the model is high-dimensional,
then some of bounding constants Mi will be large and/or some of the bins for Z have very low
probability of being proposed, so the rejection method becomes very inefficient. However, since
we can evaluate the joint distribution exactly if we use a copula, other more advanced simulation
methods can be used instead of rejection sampling. A disadvantage is that the samples would
generally only be approximately distributed correctly, but the level of error could easily be chosen
to be statistically undetectable. We leave this to future work.

4.3 Copulas

As previously discussed, copulas may provide an approach to a frugal parameterization of models
with continuous Y and Z. In this section we describe how copulas may be used to simulate from
and fit causal models with particular marginal specifications.

In the simplest case, we can start by simulating values for X using some p∗X, and then use the
copula to simulate from the causal distribution on the scale of quantiles. We then apply the inverse
CDF of p∗Y |X(y |X = xi) and pZ(z) to the uniform margins to obtain the actual observations. The

parameters for the copula itself (i.e. ϕ∗YZ|X) may or may not depend upon X. To obtain samples
from the observational distribution, we can use rejection sampling, provided that A4 is satisfied.

Example R5. Continuing our running example from Havercroft and Didelez (2012), suppose we
now wish to simulate some data from the model specified in Example R3 by rejection sampling.
We first select some values for the parameters:

θa = 0.5 (γ0, γa, γℓ, γaℓ) = (−0.3, 0.4, 0.3, 0)

(α0, α1) = (0.3,−0.2) (β0, βa, βb, βab) = (−0.5, 0.2, 0.3, 0)

and ρab = 2 expit(1 + a/2) − 1. Taking a large sample size of 106, we indeed find (empirically,
using goodness-of-fit tests) that EA = 0.5, that L appears to be exponentially distributed with
the specified mean, and that E[B | A = a, L = ℓ] has the correct form. In addition, if we fit an
inverse probability weighted (IPW) linear model for Y (using the fitted value we obtain from the
regression for B, see Hernán and Robins 2020, Chapter 12) the parameters for the interventional
distribution of Y under do(A = a,B = b) are also as expected:

β̂0 = −0.4985 (0.0022) β̂a = 0.1999 (0.0033) β̂b = 0.3002 (0.0030) β̂ab = −0.0030 (0.0042).

Code to replicate this analysis can be found in the vignette Comparison of the R package causl

(Evans, 2021).

Copulas lack many of the attractive properties of odds ratios, such as the invariance in (4), and
their interpretation is different because it is in terms of the quantiles of the margins rather than
their actual value. However, they can be extremely flexible if one has a multivariate outcome,
because one can make use of vine copulas to model them. See Appendix C for more details.

5 Fitting Methods

We start this subsection with a result telling us how to fit marginal structural models using
maximum likelihood (ML) estimation. In fact, it turns out that if we have a marginal structural
model and our full model parameterized by θ∗ is correctly specified for the observational data from
pZXY , then the MLE for p∗Y |X is obtained by maximizing the likelihood for the causal model (i.e.
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with X and Z assumed to be independent) with respect to the observational data from pZXY (so
X and Z are in fact not independent). This is the content of Theorem 5.1 below.

Note also that, although this result will not generally hold if part of the model is misspecified, if
the propensity score model pX|Z is incorrect then this will not affect inference about the remainder
of the model when w(z) = pZ(z). This is because there is a parameter cut between pZ · pY |ZX
and pX|Z (see, e.g. Barndorff Nielsen, 1978), and the parameters θ∗Y |X and ϕ∗YZ|X are (for MSMs)
functions of this first quantity.

For results connected with fitting, we will assume that all our parameters are identifiable from
the available data (cf. Remark 1.5). In particular, we will also make use of A3 again, since we
cannot hope to recover a distribution that does not satisfy a positivity assumption. Since the result
concerns maximum likelihood estimation, we will make the very slightly stronger assumption that
the Kullback-Leibler divergence between p and p∗ is finite. (Note that this is a strictly weaker
assumption than A4.)

A5. KL(pZX ∥ p∗ZX) := EpZX
log pZX(Z,X)

p∗
ZX(Z,X) <∞.

We refer to the parameters of the causal parameterization of the observational distribution as
θ∗ = (θZX , θ

∗
Y |X , ϕ

∗
YZ|X), and of the causal distribution as η(θ∗) := (ηZX(θZX), θ∗Y |X , ϕ

∗
YZ|X).

Theorem 5.1. Suppose that θ∗ is a frugal parameterization with weight function w(z) = pZ(z),
so the model we are interested in is the marginal structural model; suppose also that A5 holds.
The maximum likelihood estimator η̂ of η(θ∗) obtained with the observed data (i.e. data generated
using the distribution pZXY with parameters θ∗ = (θZX , θ

∗
Y |X , ϕ

∗
YZ|X)) will be consistent for the

distribution in the causal model with parameters η = (ηZX , θ
∗
Y |X , ϕ

∗
YZ|X).

In addition, for the estimates obtained in this way, we have

√
n

{(
θ̂∗Y |X
ϕ̂∗YZ|X

)
−

(
θ∗Y |X
ϕ∗YZ|X

)}
d−→ N

(
0, I(θ∗)−1

θ∗
Y |X ,ϕ∗

YZ|X

)
,

where I(θ∗) is the Fisher information under pZXY and I(θ∗)−1
θ∗
Y |X ,ϕ∗

YZ|X
is the submatrix of its inverse

relating to θ∗Y |X and ϕ∗YZ|X .

Proof. van der Vaart (1998, Lemma 5.35) shows that if the target distribution is identifiable, then
maximum likelihood estimation converges to the KL-minimizing distribution. Consider the density
for the causal model:

p∗ZXY (z, x, y) = p∗X(x)w(z) pY |ZX(y | z, x),

where we suppress dependence upon parameters. For a comparison with the density of the data,
note that

pZXY (z, x, y)

p∗ZXY (z, x, y)
=

pZX(z, x)

p∗X(x) · w(z)
=
pZX(z, x)

p∗ZX(z, x)
,

and hence the KL-divergence is finite by A5. Then,

KL(pZXY ∥ p∗ZXY ) =

∫
ZXY

pZXY (z, x, y) log
pZX(z, x)

p∗ZX(z, x)
dz dx dy

=

∫
ZX

pZX(z, x) log
pZX(z, x)

p∗ZX(z, x)
dz dx

= KL(pZX ∥ p∗ZX).

Now, in general the result of minimizing this expression will depend upon the precise parameter-
ization of p∗ZX , but the minimization will pick out the distribution that is ‘closest’ to pZX within
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the causal model. The result for marginal structural models is a consequence of the fact that the
minimizing distribution in this case is pX · pZ.

For the asymptotic distribution of the estimators θ̂∗Y |X and ϕ̂∗YZ|X , notice that for a marginal

structural model we have pZ = p∗Z (and of course we always have pY |XZ = p∗Y |XZ) so the parameter
cut mentioned above applies to both models. Hence, there is no asymptotic correlation between
(θ̂∗Y |X , ϕ̂

∗
YZ|X) and θ̂ZX (or η̂ZX). Then the asymptotic variance is just a standard result for MLEs

(see, e.g. Ferguson, 1996, Chapter 18).

Note that we must apply the Fisher information under pZXY in order to obtain the correct
variance, since this is the distribution of the data being used to approximate the expectation.
While the proof above is stated only for the single time-point exposure model, it extends to a
longitudinal case with multiple treatments, similar to the obvious extension of the model in our
running example.

When computing standard errors in practice we use the observed information (i.e. an empirical
approximation to the Fisher Information), rather than its theoretical mean. In principle we could
also use a ‘sandwich estimate’ to obtain more robust standard errors; because we know that our
models are correct we do not do this, but for other users of this method on real data we would
always recommend using sandwich errors. In our case these would be the square-roots of the
diagonal entries of

B(θ∗)−1A(θ∗)B(θ∗)−1,

where

A(θ∗) = Eθ∗
∂ℓ

∂η

∂ℓ

∂η

T

and B(θ∗) = Eθ∗
∂2ℓ

∂η2
.

Note that although this result shows that we can fit models via maximum likelihood estimation, if
the model is misspecified there is no guarantee that the estimator will be consistent or even close
to the true value. Other less sensitive estimators, such as doubly robust approaches (see Remark
5.4 below), may therefore be more useful in practice than the MLE.

Remark 5.2. Note that the same result (i.e. convergence of the estimator to the KL closest
distribution to pZ) will hold for the ETT estimator with kernel w(z) = pZ|X(z | 1), since this is also
independent of the value of X. In order to estimate the parameters for this kernel, we would have
to consider the subset of data for which X takes the particular value 1. We could then obtain an
MLE for the whole model by combining the complete data estimator with the separate estimate
for w obtained from the treated patients.

Remark 5.3. Given maximum likelihood estimates for the parameterization of pZXY , we can of
course use the invariance properties of MLEs together with the delta method for the standard
errors, to obtain an estimate for any (differentiable) function of the parameters that we choose.

Remark 5.4. Taking a doubly robust approach to estimating the causal parameters, we see that
if ϕYZ|X(y, z |x) := cUV |X(FY |X(y |x), FZ|X(z |x) |x) is a copula density, then

pZ(z) · pY |ZX(y | z, x) = pZ(z) · p∗Y |X(y |x) · ϕ∗YZ|X(y, z |x)
and therefore pY |ZX(y | z, x) = p∗Y |X(y |x) · ϕ∗YZ|X(y, z |x),

so Q̂(z, x) = E[Y |Z = z,X = x] can fairly easily be computed numerically; indeed, if Y and the
copula are both Gaussian, we obtain it in closed form. We then fit a model, say π̂(x | z), for the
propensity score pX|Z(x | z).

A doubly robust estimator uses Q̂ and π̂ to construct an estimating equation, and will give a
consistent estimate for the causal parameter if either model is correctly specified. If they are both
correct, then this estimator is also semiparametric efficient (Scharfstein et al., 1999). Using a doubly
robust approach to compare with the MLE will help to protect us against possible misspecification
of ϕ∗YZ|X ; this is useful given that choosing the association parameter is not particularly intuitive.
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Outcome Reg. IP Weighting

coef bias cover90 se calib bias cover90 se calib

1 −0.0769 0.837 1.21 0.0038 0.905 0.99
a −0.0303 0.880 1.03 −0.0096 0.932 0.93
b 0.1538 0.755 1.33 −0.0018 0.935 0.91
a.b 0.0220 0.901 1.00 0.0038 0.942 0.85

Double Robust MLE

coef bias cover90 se calib bias cover90 se calib

1 0.0046 0.879 1.06 0.0046 0.882 1.06
a −0.0098 0.876 1.08 −0.0071 0.891 1.03
b −0.0014 0.919 0.97 −0.0026 0.898 1.02
a.b 0.0054 0.982 0.69 0.0040 0.893 1.01

Table 1: Table giving the average bias, coverage of a 90% confidence interval, and standard error
calibration (the ratio of absolute bias to standard error) of four methods: outcome regression;
inverse probability (IP) weighting; a doubly robust estimator; and maximum likelihood estimation
(MLE).

5.1 Simulation

We now run a simulation to compare four methods: outcome regression, inverse probability weight-
ing, our maximum likelihood estimation, and standard doubly robust estimation (i.e. just using an
ordinary regression model, not as described in Remark 5.4).

We use the setup described in Examples R3 and R5 (Sections 3 and 4.3 respectively) to generate
our data, so again Y (after intervening to set {A = a,B = b}) is normally distributed with mean
−0.5 + 0.2a+ 0.3b and variance 1. We then performed N = 1000 runs of the analysis above with
sample size n = 250. The results are shown in Table 1, with boxplots of the biases in Figure 3.
The table contains the average bias, the empirical coverage of a 90% interval, and the standard
error calibration, which we define as:

sec =

(
1

N

N∑
i=1

bias(θ̂i − θ)2

se(θ̂i)2

)1/2

.

If this value is less than one it suggests that the standard errors are conservative, if larger than
one it suggest they are too small.

Outcome regression performs poorly, although this is to be expected as the model is misspecified.
We see that the other three methods all have very comparable performance and efficiencies, and
are mostly well calibrated: the MLE and DR methods give slight under coverage for the first two
parameters, though the double robust method gives conservative standard errors for the interaction
parameter. An example on a larger simulated dataset is given in Appendix D.

5.2 Data Analysis

To illustrate our method, we apply the maximum likelihood fitting procedure to data from the
IDEFICS study (Ahrens et al., 2011). The subset of data we use consists of measurements of
531 German children aged between 2 and 9, including their sex, physical activity, screen time,
parental education, a ‘vegetable score’, fibre intake, and a polygenic risk score (PRS) for BMI.
The study also records the child’s BMI and their parents’ BMIs. Preliminary analyses suggest
that increased fibre intake can reduce BMI, especially for those children who have a strong genetic
predisposition for obesity (Hüls et al., 2021). Our aim is to study the effect modification of PRS
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Figure 3: Boxplots of the bias for each coefficient by four methods: outcome regression (OR),
inverse probability weighting (IPW), doubly robust estimation (DR), and maximum likelihood
estimation (MLE).
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param. coefficient est. s.e. 95% conf. int.

β1 fibre 0.049 0.092 −0.132 0.230
β2 PRS 0.374 0.198 −0.015 0.762
β3 PRS:fibre 0.011 0.359 −0.693 0.715

Table 2: Table giving estimated coefficients in the marginal structural model for effect modification
of the PRS on BMI by fibre intake.

on the relationship between fibre intake and actual BMI, whilst adjusting for confounding due to
other covariates.

We replicate the setting in Nöhren (2021), which considers how the causal effect of a dichotomized
indicator of fibre intake (X) on age and sex standardized BMI (Y , a z-score) interacts with the
dichotomized polygenic risk score (C); like Nöhren we also use a marginal structural model:

E[Y |C = c; do(X = x)] = β0 + β1x+ β2c+ β3cx.

We assume that all other variables are causally prior to X, so that E[Y |C = c; do(X = x)] is
our causal distribution of interest, where Z consists of other confounders; these include sex, age,
physical activity, screen time, vegetable score and a dichotomized version of parental education
level.

We choose an ordinary Gaussian linear model for the MSM, and also the other models used for
variables in Z. The copula was also Gaussian. Note that in order to accommodate sex and parental
education as binary variables it was necessary to integrate over the copula, effectively making it a
probit model (see also Example 2.6).

The relevant coefficients from the model fit are shown in Table 2. Under our modelling as-
sumptions, these results do not suggest that increased fibre intake reduces BMI and thus we
cannot confirm previous results obtained on a larger dataset of 2,688 children from seven countries
(Nöhren, 2021); the estimates from that study are within our (rather wide) confidence intervals,
though. Furthermore, the analysis of Nöhren for the marginal structural model using inverse prob-
ability weighting on only the German data yields slightly different parameter estimates, and larger
standard errors (see Appendix E for details). This illustrates—in a practical analysis—the differ-
ences between, on the one hand, modelling the C-Y -Z association directly or, on the other hand,
modelling the propensity score for the inverse probability weights.

6 Survival Models

Another application of the frugal parameterization is to causal longitudinal models, and in partic-
ular to survival models. Note that with sequences of treatment variables, the sequential versions of
identifying assumptions must be met (cf. Remark 1.5) known as sequential conditional exchange-
ability ; we continue to take these as given in Sections 6 and 7.

The following corollary of Theorem 3.1 allows us to ‘build up’ a frugal parameterization of the joint
distribution using several different cognate quantities. Given a collection of variables Y1, . . . , Yd
under some natural ordering (typically a temporal ordering), let [i− 1] = {1, . . . , i− 1} denote the
predecessors of each i = 1, . . . , d.

Corollary 6.1. Let Y1, . . . , Yd have joint density p, and let Xi := YAi
= {Yj : j ∈ Ai} for some

Ai ⊆ [i−1]. Also let p∗Yi|Xi
(yi |xi) be defined by applying (3) with Zi := YLi

where Li := [i−1]\Ai.

Then there is a smooth and regular parameterization of the joint distribution, which can be chosen
to be variation independent, containing each p∗Yi|Xi

(yi |xi).

Proof. We proceed by induction. For i = 1 we just have a smooth and regular parameteriza-
tion of pY1

(y1). For a general i, assume we have a smooth parameterization of the joint density
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for Y1, . . . , Yi−1 and of p∗Yi|Xi
(yi |xi). Then using some appropriate ϕ∗YiZi|Xi

to make up a frugal

parameterization (and A1 if required), by Theorem 3.1 we obtain a smooth and regular parame-
terization of the joint density for Y1, . . . , Yi, and—if A1 holds—the quantities used are all variation
independent of one another.

We refer to this approach as a recursive or nested frugal parameterization, because in each case
‘the past’ (i.e. pZX) is itself parameterized in a frugal manner.

Example 6.2. Young and Tchetgen Tchetgen (2014) consider survival models with time-varying
covariates and treatments. Let Yt = 0 be an indicator of survival up to time t (with Yt = 1
indicating failure). Let Lt, At be respectively covariates and treatment at time t = 0, . . . , T .
Young and Tchetgen Tchetgen model the quantities

P (Yt = 0 |Yt−1 = 0, do(a1, . . . , at−1)), t = 1, . . . , T ;

i.e. probability of survival to the next time point given treatment history and survival so far. Under
their assumptions these quantities are identifiable via the g-formula as

p(yt | yt−1, do(at−1)) =
∑
ℓt

p(yt | yt−1, at−1, ℓt)

t∏
s=1

p(ℓs | as−1, ℓs−1); (7)

note that we omit some subscripts on densities for brevity. Corollary 6.1 tells us that, setting
Xt = At and Zt = Lt, a parameterization exists of the joint distribution that uses these quantities
for each t = 1, . . . , T . Given the distribution of p(at−1, ℓt−1, yt−1), the quantities

p(yt | yt−1, do(at−1)) ϕ∗
YtLt−1|At−1Y t−1

(yt, ℓt−1 | at−1, yt−1)

may be used to recover p(at−1, ℓt−1, yt).

Young and Tchetgen Tchetgen (2014) note that simulation from this model is difficult for certain
parametric choices, because some parameters from the joint model and the marginal model are
tied together in complicated ways. They derive results that allow them to compute particular
causal parameters as functions of the joint distribution, and hence to evaluate the performance of
simulation methods exactly. Our approach overcomes this problem by allowing causal quantities
of interest to be specified explicitly, and then have the rest of the distribution constructed around
them.

The model is parameterized so that failure is a rare outcome, which allows approximation of the
expit function by an exponential function. The parameters of interest are then those of the Cox
Marginal Structural Model:

p∗
Yt|AtYt−1

(1 | do(at), Yt−1 = 0)

p∗
Yt|AtYt−1

(1 | do(0t), Yt−1 = 0)
= eγ(t,at) = exp (ψ0at + ψ1at−1 + ψ01atat−1) ,

which, as we see above, the authors assume to depend only upon the previous two treatments.
These parameters ψ are estimated by fitting an inverse weighted GLM to the data.

The authors also state that: ‘[we] therefore, may be limited to simulation scenarios with the
proposed algorithm to particularly unrealistic settings if we wish simultaneously to generate data
under the null.’ Our results demonstrate that if one uses our algorithms this is not the case. The
null in this example corresponds to ψ0 = ψ1 = ψ01 = 0; since the model is discrete we are free to
choose arbitrary regression models for the treatment on the observed past, for the covariates on
their past values and treatments (and even unobserved quantities), and any arbitrary dependence
structure between survival and the covariates, conditional on all previous treatments and covariates.
This will allow us to simulate from any distribution under which treatment has no (marginal) causal
effect upon survival. In Appendix F we perform some simulations on this model.
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7 Structural Nested Model Parameterizations

Not all causal parameterizations involve modelling the entire conditional distribution for every
level of the conditioning variable; i.e. quantities of the form p∗Y |X(y |x) for every value of x ∈
X . The structural nested models of Robins and Tsiatis (1991) are an example of this. These
allow for interactions between time-varying covariates and time-varying treatments, but they are
always marginal over future covariates; this makes them considerably more flexible than marginal
structural models, because they allow for dependence in treatment decisions on all observed data.
We again continue to make the necessary assumptions for identifiability; see Robins and Tsiatis
(1991) for more detail.

Example 7.1 (Structural Nested Models). Suppose we have a sequence of binary treatments
A1, . . . , AT and time-varying covariates L1, . . . , LT , together with an outcome Y . Let Lt ≡
(L1, . . . , Lt) and Lt ≡ (Lt, . . . , LT ), and similarly for At, At. The structural nested model (Robins
and Tsiatis, 1991) involves contrasts between at = 0, 1 of the form:

pY |LtAT
(y | ℓt, at−1, do(at, at+1 = 0)), ∀ ℓt, at−1, t = 0, . . . , T.

The parameterization divides the effect of the treatments into pieces corresponding to ‘blips’ of
effect at each time point: that is, at each time t, we consider the effect of receiving treatment at
that time but no further treatment, versus never receiving any treatment from time t onwards.
The contrast may be in the form of a risk difference, risk ratio or other suitable quantity.

We represent such a generic contrast by introducing a tilde above the variable being contrasted;
in the above example we would write:

pY |LtAT
(y | ℓt, at−1, do(ãt, at+1 = 0)), ∀ ℓt, at−1, t = 0, . . . , T. (8)

See the more formal Definition 7.2 below.

We define two additional kinds of parameter to generalize these ideas.

Definition 7.2. Let qY |XZ(y |x, z) be a conditional distribution. We denote by qY |XZ(y |x0, z) a
baseline parameter, which can smoothly recover the relevant conditional distribution at a particular
baseline value X = x0.

We will denote by qY |XZ(y | x̃, z) a contrast parameter (over X). We define the pair of baseline
and contrast parameters to be a full parameterization if, when we combine them, we can smoothly
recover all of qY |XZ(y |x, z).

In the appendix we give Lemma B.1, showing we can use risk differences, risk ratios or odds ratios
as contrast parameters, if p > 0 and each Xt is binary. Examples of a set of baseline parameters
might be (β0, βz, σ

2) for some regression model y = β0 + βxx + βzz + ε, where Var ε = σ2; the
natural contrast parameter would then be βx. Alternatively it might be the density pY |XZ(y |x0, z),
y ∈ Y, z ∈ Z, for some value x0 ∈ X ; the contrast parameter could then be a risk ratio:

pY |XZ(y | x̃, z) ≡
pY |XZ(y |x, z)
pY |XZ(y |x0, z)

for all x ∈ X , y ∈ Y, z ∈ Z.

7.1 Iterated Frugal Parameterization

How can we use the frugal parameterization to obtain the structural nested model? We now
introduce the iterated frugal parameterization to allow us to do just that.

Consider a sequence of random variables L1, A1, L2, . . . , LT , AT and an outcome of interest Y .
Assume also that there is a natural ‘baseline’ treatment level Ai = a0i . Then the iterated frugal
parameterization consists of a parameterization of ‘the past’ (i.e. pZX), of p∗

Y |L1AT
(y | ℓ1, a0T ), and
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the following quantities:

p∗
Y |LtAT

(y | ℓt, at−1, ãt, a
0
t+1)

ϕ∗
YLt+1|LtAt

(y, ℓt+1 | ℓt, at)

 ∀y, ℓT , aT
t = 1, . . . , T,

where the parameters can be used to obtain p∗
Y |LtAT

(y | ℓt, at−1, a
0
t , a

0
t+1) such that combined with

p∗
Y |LtAT

(y | ℓt, at−1, ãt, a
0
t+1) we obtain a ‘full’ parameterization (for p∗

Y |LtAT
(y | ℓt, at, a0t+1)). Note

that if we consider the contrast parameter to be all the possible values other than the baseline
value, then each state of aT will appear on the right-hand side of a quantity p∗

Y |LtAT
exactly once.

7.2 The Structural Nested Model

How can we use a parameterization that incorporates all the quantities (8)? Based on the temporal
ordering, and given pY |LtAT

(y | ℓt, at−1, do(at, at+1 = 0)) and

pLt+1|LtAT
(ℓt+1 | ℓt, at−1, do(at, at+1 = 0)) = pLt+1|LtAt

(ℓt+1 | ℓt, at),

we need ϕ∗
YLt+1|LtAt

(y, ℓt+1 | ℓt, at) to recover the joint pYLt+1|LtAT
(y, ℓt+1 | ℓt, at, do(at+1 = 0)).

Then notice

p(y, ℓT | at, do(at+1)) = p(y, ℓT | at+1, do(at+2)) ·
p(at+1 | at)
p(at+1 | ℓt, at)

,

so we can ‘change worlds’ and obtain probabilities with the same settings from a reweighting that is
identifiable from the previous variables. The following proposition gives the general result, proved
and illustrated by examples in Appendix B.

Proposition 7.3. We can parameterize pLTATY (ℓT , aT , y) using smooth and regular parameteri-

zations for p∗
Y |L1AT

(y | ℓ1, a0T ) and

pLtAt|Lt−1At−1
(ℓt, at | ℓt−1, at−1)

p∗
Y |LtAT

(y | ℓt, at−1, ãt, a
0
t+1)

ϕ∗
YLt+1|LtAt

(y, ℓt+1 | ℓt, at)

 ∀y, ℓT , aT
t = 1, . . . , T,

where each p∗
Y |LtAT

is cognate for the particular baseline a0t+1. In particular, our parameterization

can include ‘blips’ such as those in (8). If either the contrast parameter is the odds ratio, or the risk
ratio and the outcome is positive and unbounded, then these pieces are also variation independent.

The proof for the special case of binary treatment variables is given in Appendix B. With this
general formulation we do not require p∗

Y |LtAT
to be of the same form for each t = 1, . . . , T ; this

flexibility may be useful for many settings. However, we do need the baseline level a0t+1 to be
consistent over all t, since otherwise the inductive argument we use will not work. Note also that
ϕ∗
YLT+1|LTAT

is trivial, since LT+1 is assumed constant.

Two numerical examples are given as R6 and B.2 in Appendix B.

Remark 7.4. The History-Adjusted Marginal Structural Models (HAMSMs) introduced by van der
Laan et al. (2005) model (the mean of) the distributions

pY |LtAT
(y | at−1, ℓt, do(at)), t = 1, . . . , T.

This is similar to the form of a structural nested mean model, but in this case we attempt to
model all future treatment regimes simultaneously, not just at a baseline at = 0. This effectively
requires us to model the association between Y and each At multiple times in different margins, and
hence we will be using parameters that are redundant; it therefore does not fall within our frugal
framework. This was pointed out by Robins et al. (2007), who showed that it is a non-congenial
parameterization, and may lead to incompatible distributions.
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8 Discussion and Conclusion

As we have demonstrated, the principle of a frugal parameterization is widely applicable and useful
in many marginal modelling contexts, especially causal models. We begin this discussion by briefly
considering three more key settings for causal models: sensitivity analysis, instrumental variable
(IV) analysis and mediation analysis.

In sensitivity analysis, a key challenge is to construct an augmented model that is compatible with
the original model in the sense that it shares a marginal distribution over the observed variables,
but can be tweaked to introduce various levels of unobserved confounding. This is clearly possible
within our framework; considering Example R7 in Appendix C, we can set the correlations involving
U to zero, and then increase them to test the dependence of our conclusions to the presence of an
unobserved confounder.

In an IV analysis, the instrument is used as an imperfect replacement for randomization when the
actual treatment X is affected by unobserved confounding. To formulate a generative IV model
we typically want to combine a desired parameterization for p∗Y |X(y | do(x)) with a model that
includes the IV and the confounder U . The difficulty, here, is due to the particular properties of
an IV which require the joint model to satisfy certain conditional independence properties while
being compatible with the marginal causal model. This is especially problematic for non-collapsible
cases, for instance for logistic structural mean models (Robins and Rotnitzky, 2004; Vansteelandt
et al., 2011; Clarke and Windmeijer, 2012) or structural Cox models (Martinussen et al., 2017).
As outlined in Appendix G, we believe that our approach based on the frugal parameterization
can also be helpful in these situations, but we leave details for future work.

In contrast, causal mediation analysis is an example where models contain singularities and
therefore our approach cannot be applied. Decomposing the effect of a treatment A on outcome Y
into the indirect effect via mediatorM , and the remaining direct effect, is conceptually the same as
splitting A into two separate nodes A,A′, where observationally we always have A = A′; mediation
questions may then be considered as asking what would happen if A ̸= A′ (Robins and Richardson,
2010). The quantities of interest are therefore generally functions of pY |AA′(y | do(a, a′)), but where
at the same time Y ⊥⊥ A′ | A,M holds in the full model where the two treatments are potentially
different (Didelez, 2019). Because this independence requires us to model the Y -A′ association
within the joint distribution, not within the (Y,A,A′)-margin, the only parameters that we are
free to specify are then those of the distribution of Y given each level of A (i.e. the strength of
the direct effect); this is explicitly possible in the discrete case using results in Evans (2015). In
other cases, attempts to specify both p∗Y |AA′ and p∗Y |AA′M separately may lead to models which

are not compatible; for example, the equations (4) and (5) of Loeys et al. (2013) do not generally
give a valid model because the logit function is not closed under marginalization. Lange et al.
(2012) avoid the problem of explicitly modelling the joint distribution by using marginal structural
models instead, though their approach does not allow for simulation from the resulting model.

Another example of nonsmoothness comes from quantities such as Eθ[Y | do(x)] − Eθ[Y |x], or
some other contrast between these two distributions.‖ This leads to a parameterization which is
degenerate, in the sense that its derivative (or nonparametric equivalent) is zero in some directions
when the two distributions are the same.

While such nonsmooth models still remain a challenge, we are certain that marginal models based
on a frugal parameterization have many further useful applications and extensions worth exploring
in future work. For instance, classes of distribution that are closed under marginalization and
conditioning, such as MTP2 distributions (Karlin and Rinott, 1980), will naturally combine with
our approach. On the technical side, the proposed rejection sampling method can be inefficient,
and it would be desirable to improve this by using more advanced methods, along the lines of those
suggested by Jacob et al. (2020).

As we noted in Section 1.2, we can see two opposing or complementary trends in causal modelling:

‖This is related to (though distinct from) the parameter used by Hubbard and Van der Laan (2008) to estimate
the effect of giving an entire population a particular treatment, versus no intervention at all.
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many approaches are based on specifying structural causal models that implicitly or explicitly con-
dition on the entire past, and do not consider marginal objects such as pY |X(y | do(x)). In contrast,
our approach is found in the books by Pearl (2009, Chapter 3), Imbens and Rubin (2015) and
Hernán and Robins (2020), which all consider marginal causal quantities to be fundamental. Be-
yond frugal parameterizations, we believe that thinking about causal models as a form of marginal
model, for which there is an older and richer literature, may lead to many more advances in the
field.

Acknowledgements

We are grateful to Bohao Yao for some early simulations, as well as to Thomas Richardson, James
Robins, Ilya Shpitser, the Associate Editor and four anonymous reviewers for their insights and
suggestions. We would also like to thank Qingyuan Zhao for reading a late draft and providing
very insightful comments and corrections, including the idea about a sensitivity analysis. Part of
a revision of the manuscript was undertaken while both authors were Visiting Scientists at the
Simons Institute, Berkeley.

Data Availability

Section 5.2 was done as part of the IDEFICS Study∗∗. The data used in this article cannot be
shared publicly due to confidentiality policies agreed with the families participating in the study.

Funding

We gratefully acknowledge the financial support of the European Commission within the Sixth
RTD Framework Programme Contract No. 016181. The authors have no conflicts of interest to
declare.

References

W. Ahrens, K. Bammann, A. Siani, K. Buchecker, S. De Henauw, L. Iacoviello, A. Hebestreit,
V. Krogh, L. Lissner, S. Mårild, et al. The IDEFICS cohort: design, characteristics and partic-
ipation in the baseline survey. International Journal of Obesity, 35(1):S3–S15, 2011.

O. Barndorff Nielsen. Information and exponential families in statistical theory. Wiley, New York,
1978.

T. Bedford and R. M. Cooke. Vines–a new graphical model for dependent random variables. Annals
of Statistics, 30(4):1031–1068, 08 2002. URL https://doi.org/10.1214/aos/1031689016.

W. Bergsma and T. Rudas. Marginal models for categorical data. Ann. Stat., 30(1):140–159, 2002.

Y. Bishop. Multidimensional Contingency Tables: Cell Estimates. PhD thesis, Harvard University,
1967.

H. Y. Chen. A semiparametric odds ratio model for measuring association. Biometrics, 63(2):
413–421, 2007.

P. S. Clarke and F. Windmeijer. Identification of causal effects on binary outcomes using structural
mean models. Biostatistics, 11(4):756–770, 06 2010. ISSN 1465-4644. doi: 10.1093/biostatistics/
kxq024. URL https://doi.org/10.1093/biostatistics/kxq024.

∗∗http://www.idefics.eu

24

https://doi.org/10.1214/aos/1031689016
https://doi.org/10.1093/biostatistics/kxq024
http://www.idefics.eu


P. S. Clarke and F. Windmeijer. Instrumental variable estimators for binary outcomes. Journal
of the American Statistical Association, 107(500):1638–1652, 2012. doi: 10.1080/01621459.2012.
734171. URL https://doi.org/10.1080/01621459.2012.734171.

P. Clifford. Monte carlo methods. In J. Stanford and S. Vardeman, editors, Statistical methods for
Physical Science, chapter 5, pages 125–153. Academic Press, 1994.

I. Csiszár. I-divergence geometry of probability distributions and minimization problems. Annals
of Probability, 3(1):146–158, 1975.

J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models. Annals of
Mathematical Statistics, 43(5):1470–1480, 1972.

A. P. Dawid and V. Didelez. Identifying the consequences of dynamic treatment strategies: a
decision-theoretic overview. Statististical Surveys, 4:184–231, 2010.

V. Didelez. Defining causal mediation with a longitudinal mediator and a survival outcome. Life-
time Data Analysis, 25:593–610, 2019.

P. Diggle, P. Heagerty, K.-Y. Liang, and S. L. Zeger. Analysis of longitudinal data. Oxford
University Press, second edition, 2002.

M. Drton. Likelihood ratio tests and singularities. Annals of Statistics, 37(2):979–1012, 2009.

A. W. F. Edwards. The measure of association in a 2× 2 table. Journal of the Royal Statistical
Society, Series A, 126(1):109–114, 1963.

R. J. Evans. Smoothness of marginal log-linear parameterizations. Electronic Journal of Statistics,
9(1):475–491, 2015.

R. J. Evans. causl, May 2021. URL https://github.com/rje42/causl.

J. Fan, H. Liu, Y. Ning, and H. Zou. High dimensional semiparametric latent graphical model for
mixed data. Journal of the Royal Statistical Society: Series B, 79(2):405–421, 2017.

T. S. Ferguson. A course in large sample theory. Chapman and Hall/CRC, 1996.

W. Havercroft and V. Didelez. Simulating from marginal structural models with time-dependent
confounding. Stat. Med., 31(30):4190–4206, 2012.

M. A. Hernán and J. M. Robins. Causal Inference: What If. Boca Raton: Chapman & Hill/CRC,
2020.

A. E. Hubbard and M. J. Van der Laan. Population intervention models in causal inference.
Biometrika, 95(1):35–47, 2008.
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A Smoothness, Regularity and Singularity

The first few definitions in this section are adapted from Newey (1990) and Chapter 5 of van der
Vaart (1998). Suppose that we have have a parametric family of distributions M = {pθ : θ ∈ Θ ⊆
Rd}, indexed by a parameter θ.

Definition A.1. We say that the model M is differentiable in quadratic mean if there exists a
function ℓ̇(θ0) such that as θ → θ0,∫ [

√
pθ −

√
pθ0 −

1

2
(θ − θ0)

T ℓ̇(θ0)
√
pθ0

]
dµ = o(∥θ − θ0∥2).

If a model is differentiable in quadratic mean we say that the parameterization induced by θ is
smooth. Now, for almost all statistical models of interest, ℓ̇ is of course the score function, that is

ℓ̇(θ) =
∂

∂θ
log pθ.

In this case, if the Fisher information matrix

I(θ) = Eℓ̇(θ)ℓ̇(θ)T

is non-singular, then we also say that the map defined by θ is a regular parameterization.

We also have related but separate terminology for submodels, which we adapt from Drton (2009).

Definition A.2. Given a submodel of M, say M′ ⊆ M, we say that M′ is nonsingular if the
induced subset of Θ is everywhere locally Euclidean and of constant dimension. Otherwise the
model has points of singularity or singularities.

An examples of a model with singularities would be the union of the axes {(θ1, θ2) : θ1θ2 = 0},
because this model is not locally Euclidean at θ1 = θ2 = 0.

B Proof of Proposition 7.3

We extend the notion of a risk difference, risk ratio or odds ratio to a general outcome variable
(but still binary treatment) by writing

RD := pY |ZX(y | z, x = 1)− pY |ZX(y | z, x = 0)

RR :=
pY |ZX(y | z, x = 1)

pY |ZX(y | z, x = 0)

OR :=
pY |ZX(y | z, x = 1) · pY |ZX(y0 | z, x = 0)

pY |ZX(y0 | z, x = 1) · pY |ZX(y | z, x = 0)

for some arbitrary baseline value y0. This latter definition is a special case of the one used by Chen
(2007).

Lemma B.1. Suppose p > 0, and that X is binary. Given pZX(z, x), pY |Z(y | z) and pY |ZX(y | z, x̃),
where x̃ is contrasted using a risk difference, risk ratio or an odds ratio, we can smoothly recover
pY |ZX(y | z, x). In addition, if we use the risk ratio and the range of Y > 0 is unbounded, or we
use the odds ratio these three pieces will be variation independent.

Proof. For a risk difference or ratio, it is clear that if pZX(z, x) and pY |Z(y | z) are fixed, then

θz = pY |ZX(y | z, x = 1)− pY |ZX(y | z, x = 0)

θ′z =
pY |ZX(y | z, x = 1)

pY |ZX(y | z, x = 0)
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each give a regular representation of pY |ZX(y | z, x) when combined with

pY |Z(y | z) =
1∑

x=0

pX|Z(x | z)pY |ZX(y | z, x).

For the odds ratio we refer to Chen (2007) for details. The variation independence of the odds
ratio from its margins is well known (e.g. Rüschendorf, 1995). If Y is unbounded and pY |ZX(y | z, x̃)
is the risk-ratio, then it is clear that we can modify it in any way and still obtain a valid joint
distribution.

Proof of Proposition 7.3. We consider the special case in which each At is binary, and proceed by
induction on T . Note that we can combine all the conditionals pLtAt|At−1Lt−1

to obtain the joint
distribution pLTAT

. Now, by a simple adaptation of Theorem 3.1, we start with

p∗
Y |L1AT

(y | ℓ1, a01) p∗
Y |L1AT

(y | ℓ1, ã1, a02) ϕ∗YL2|L1A1
(y, ℓ2 | ℓ1, a1),

from which we can recover p∗
Y |L1AT

(y | ℓ1, a1, a02) by Lemma B.1. We can then combine with

pL2|L1A1
and ϕ∗YL2|L1A1

to obtain p∗
YL2|L1AT

(y, ℓ2 | ℓ1, a1, a02), and consequently (by reweighting)

pYL2|L1AT
(y, ℓ2 | ℓ1, a1, a02).

Now, assume for induction that we can recover pY |LtAT
(y | ℓt, at−1, a

0
t ); we have shown this

for t = 2. We can reweight with some function of pLTAT
to obtain p∗

Y |LtAT
(y | ℓt, at−1, a

0
t ),

and then combining with p∗
Y |LtAT

(y | ℓt, at−1, ãt, a
0
t+1) and again using Lemma B.1 we obtain

p∗
Y |LtAT

(y | ℓt, at, a0t+1). Then, we can again use ϕ∗
YLt+1|LtAt

together with p∗
Y |LtAT

and p∗
Lt+1|LtAT

(for At+1 = a0t+1) to obtain p∗
YLt+1|LtAt

. Reweighting again yields an expression for pYLt+1|LtAT

when At+1 = a0t+1, and hence pY |Lt+1AT
(y | ℓt+1, at, a

0
t+1).

Hence, by induction, we can obtain pY |LTAT
, and consequently pLTATY .

The results on variation independence follow directly from the implications in Lemma B.1.

Example R6. Consider again the model in Figure 2; in this case, we have A1 = A and A2 = B,
with L2 = L and L1 being null. A structural nested mean model would include

pY |AB(y | do(a = b = 0)) pY |AB(y | do(a = 1, b = 0))

and pY |ALB(y | a, ℓ, do(b̃)).

In order to complete the parameterization we also need pALB and ϕ∗YL|A; the latter of these could
be the conditional odds ratio in the discrete case, for example. The advantage of this representation
of an SNM is that it makes absolutely clear which (groups of) parameters are free to be varied.
Indeed, like the previous examples this ‘model’ is such that any distribution over A,L,B, Y (or
more generally AT , LT , Y ) can be represented using this parameterization.

We demonstrate this by constructing a distribution for a structural nested mean model over this
graph. We take all variables to be binary, and let the blips be in the form of risk differences:

pY |AB(1 | do(a = b = 0)) = 0.2

pY |AB(1 | do(a = 1, b = 0))− pY |AB(1 | do(a = b = 0)) = 0.1

pY |ALB(1 | a, ℓ, do(b = 1))− pY |ALB(1 | a, ℓ, do(b = 0)) = 0.1a+ 0.05ℓ.

Suppose also that pA(1) = 0.3, and

pL|A(1 | a) = 0.4− 0.1a

pB|AL(1 | a, ℓ) = 0.2 + 0.3a+ 0.3ℓ

log ϕYL|A(1, 1 | a) = 0.1 + 0.1a,
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a ℓ b pY |ALB(1 | a, ℓ, b)
0 0 0 0.194
1 0 0 0.287
0 1 0 0.210
1 1 0 0.330
0 0 1 0.194
1 0 1 0.387
0 1 1 0.260
1 1 1 0.480

Table 3: Table giving probability of survival from the SNMM in Example R6.

ℓ1 ℓ2 a1 a2 pY |L2A2
(1 | ℓ2, a2)

0 0 0 0 0.187
1 0 0 0 0.189
0 1 0 0 0.219
1 1 0 0 0.205
0 0 1 0 0.294
1 0 1 0 0.381
0 1 1 0 0.315
1 1 1 0 0.429

0 0 0 1 0.187
1 0 0 1 0.239
0 1 0 1 0.269
1 1 0 1 0.305
0 0 1 1 0.394
1 0 1 1 0.531
0 1 1 1 0.465
1 1 1 1 0.629

Table 4: Table giving probability of survival from the SNMM in Example B.2.

where ϕYL|A is the conditional odds ratio. The resulting conditional probabilities pY |ALB(1 | a, ℓ, b)
are given in Table 3.

Example B.2. This is an expansion of Example R6 to include a non-null L1 value, and using the
notation of the rest of Section 7. Suppose that T = 2, all variables are binary, and let the blips be
in the form of risk differences:

pY |L1A2
(1 | ℓ1, do(a1 = a2 = 0)) = 0.2

pY |L1A2
(1 | ℓ1, do(a1 = 1, a2 = 0))− pY |L1A2

(1 | ℓ1, do(a1 = a2 = 0)) = 0.1 + 0.1ℓ1

pY |L2A2
(1 | ℓ1, a1, ℓ2, do(a2 = 1))− pY |L2A2

(1 | ℓ1, a1, ℓ2, do(a2 = 0)) = 0.05ℓ1 + 0.05ℓ2 + 0.1a1.

Suppose also that pL1
(1) = 0.5 and pA1|L1

(1 | ℓ1) = 0.3 + 0.3ℓ1, and

pL2|L1A1
(1 | ℓ1, a1) = 0.4 + 0.3ℓ1 − 0.1a1 − 0.2ℓ1a1

pA2|L2A1
(1 | ℓ1, ℓ2, a1) = 0.2 + 0.3a1 + 0.3ℓ2

log ϕYL2|L1A1
(1, 1 | ℓ1, a1) = 0.1 + 0.1I{a1=ℓ1},

where ϕYL2|L1A1
is the conditional odds ratio. The resulting conditional probabilities pY |L2A2

(1 | ℓ2, a2)
are given in Table 4.

30



C Vine Copulas

As described in Example 2.4, a copula is a multivariate CDF with uniform (0, 1) margins, and
can be obtained from any continuous parametric multivariate model by transforming each margin
using its univariate CDF. However, there is a relative dearth of multivariate families in dimensions
greater than two, and this limits the flexibility of such an approach. One solution to this problem
has been to use vine copulas, which chain together bivariate families in order to give more flexible
representations of multivariate models.

We do not describe vine copulas in full generality here for the sake of brevity, see Bedford and
Cooke (2002) for details. Consider a system of three variables, U , L and Y . In the case that
L ⊥⊥ Y | U , we can model the joint distribution using two separate copulas, one each for the L,U
margin and the U, Y margin. Due to the conditional independence, the conditional quantiles of L |U
and Y |U are uniformly distributed and uncorrelated. It is then possible to relax the conditional
independence constraint, by placing another copula model on these conditional quantiles. Crucially,
the distributions of the original bivariate margins remain the same.

Vine copulas also have the nice property that for the second level and above, parameters are
conditional on the values of the first level; in particular they are variation independent. As a
comparison, the standard parameters of a jointly Gaussian copula have to yield a positive definite
matrix, which is hard to enforce (other than by using the vine copula approach of considering
partial correlations). This is particularly useful if we introduce the treatment or other covariates
as modifying the parameters, since the link functions can be much simpler.

Example R7. We will again apply this to Example R1 from Havercroft and Didelez (2012), this
time including the latent variable U . We use Gaussian copulas in a vine for the triple (U,L, Y ),
with U -L and U -Y correlation parameters 2 expit(1) − 1 ≈ 0.462, and L-Y partial correlation
parameter 2 expit(0.5)− 1 ≈ 0.245. We take L and Y to be exponentially distributed with means

E[L | A = a] = exp(−(0.3− 0.2a))

E[Y | do(A = a,B = b)] = exp(−(−0.5 + 0.2a+ 0.3b)),

as well as A ∼ Bernoulli( 12 ) and B | L = ℓ, A = a ∼ Bernoulli(expit(−0.3 + 0.4a + 0.3ℓ)); the
marginal distribution of U plays no role, so we simply leave it as uniform. We simulate a dataset
of n = 104 individuals, and again fitting via IPW we obtain:

β̂0 = −0.489 (0.022) β̂a = 0.202 (0.033) β̂b = 0.314 (0.029) β̂ab = −0.040 (0.042).

Robust standard errors are shown in brackets, and each estimate is indeed less than one standard
error away from its respective nominal value. Code to replicate this analysis is contained in the
vignette Hidden_Variables of the R package causl.

D Simulation Example

We now apply the approach given in Section 5.1 to a single large dataset of size n = 104. Table
5 shows the results, which this time are the estimates, standard errors and bias. We see that our
maximum likelihood method indeed has the jointly smallest standard errors, and that for each of
the IPW, MLE, and doubly robust approaches the estimates are suggestive of consistency. Only
the outcome regression model fails, and this is unsurprising since it is misspecified. Code relating
to this example is also found in the vignette Comparison in the R package causl.
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Outcome Regression IP Weighting Double Robust MLE

Est. SE Bias Est. SE Bias Est. SE Bias Est. SE Bias

β0 −0.58 0.020 −0.076 −0.48 0.024 0.018 −0.49 0.021 0.012 −0.49 0.019 0.007
βa 0.17 0.030 −0.030 0.20 0.036 −0.005 0.20 0.029 −0.003 0.20 0.027 −0.001
βb 0.46 0.028 0.157 0.28 0.031 −0.020 0.29 0.028 −0.011 0.29 0.025 −0.005
βab 0.04 0.040 0.042 0.03 0.045 0.026 0.02 0.053 0.024 0.02 0.034 0.019

Table 5: Table giving coefficients from the marginal structural model via outcome regression (i.e.
näıve regression on A and B); inverse probability weighting (IPW); doubly robust method (DR);
and our maximum likelihood approach (MLE).

param. coefficient est. s.e. 95% conf. int.

β1 fibre 0.331 0.247 −0.153 0.814
β2 PRS 0.497 0.208 0.089 0.906
β3 PRS:fibre −0.492 0.452 −1.377 0.393

Table 6: Table giving estimated coefficients in the marginal structural model fitted by Nöhren for
effect modification of the PRS on BMI by fibre intake, when applied to the same subset of the data
that we used.

E Data Analysis

The analysis of Nöhren consisted of using IPW with a propensity score model based on the logistic
regression model that relates dichotomized fibre intake to

country · sex · age · age2 + country · isced + isced · age + isced ·MVPA+ vegscore ·AVM

as well the intercept and all other subsets of the terms above. Here isced is the average parental
education level; AVM is the average time spent with audiovisual media in hours per week; MVPA
is the average moderate-to-vigorous physical exercise performed in minutes per day; vegscore is
the vegetable score. When we run the same analysis (indeed, the same code) for only the German
children, the results obtained are shown in Table 6.

F Young and Tchetgen Tchetgen Simulations

The full model of Young and Tchetgen Tchetgen involves parameterizing

pYt|AtYt−1
(1 | do(at), Yt−1 = 0)

pYt|AtYt−1
(1 | do(0t), Yt−1 = 0)

= eγ(t,at) = exp (ψ0at + ψ1at−1 + ψ01atat−1) .

We are also free to specify models for the dependence of each treatment and the covariates
upon previous treatments and covariates, as well as the association parameters between each Yt
and earlier covariates. Again, these can all be different for every t, but we follow Young and
Tchetgen Tchetgen who use logistic regressions for each variable. They have

logit pAt|At−1LtYt−1
(1 | at−1, ℓt−1, yt−1 = 0) = α∗ + α0ℓt

logit pLt|At−1Lt−1Yt
(1 | at−1, ℓt−1, yt = 0) = β1at−1.
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β1 θa0 Bias(θ̂a0) θℓ0 Bias(θ̂ℓ0) ψ0 Bias(ψ̃0)

−2.0 −2.0 −0.0005 −0.8 0.0023 −0.79955 −0.0079
−0.5 −0.5 0.0004 −0.8 −0.0017 −0.79957 0.0024
0.0 −0.5 −0.0035 −0.8 0.0005 −0.79957 −0.0024

−0.5 0.0 0.0018 −0.8 −0.0003 −0.79950 0.0009
0.5 −2.0 −0.0305 −0.8 0.0022 −0.79955 −0.0041
2.0 −2.0 −0.0574 −0.8 0.0008 −0.79955 −0.0029

Table 7: Table showing bias in estimates from the survival model of Young and Tchetgen Tchetgen
(2014). The values given for each parameter are the precise values chosen, and θ̂ is the MLE, while
ψ̃ is estimated via inverse probability weighting. The sample bias in these estimates’ mean is shown
in the adjacent column; we performed N = 5000 runs with sample size n = 105.

Z X

U

Y

Figure 4: A representation of the instrumental variables model.

They also use a logistic regression for the distribution of survival given the treatments and covari-
ates, but we want to parameterize directly in terms of the ψs. We therefore define

logit pYt|AtLtYt−1
(1 | at, ℓt, yt−1 = 0) = θ∗ + θa0at + θℓ0ℓt + θa1at−1,

noting that the parameters θa0 and θa1 are not actually free, because they are a function of the
other parameters after specifying ψ0, ψ1 and ψ01.

Young and Tchetgen Tchetgen specify the vectors α = (0.5, 0.5), β1 = −2 and θ = (−7,−0.5,−0.8, 0)
and then use the g-formula (7) to compute the corresponding values of ψ0, ψ1, ψ01. We will specify
the values of ψ as well as θ∗ and θℓ0, and then compute the new values of other elements of θ.
Note that all of the values of ψ0 used are very close to −0.8, which is a consequence of the rare
outcome assumption made by the original authors.

Continuing the example from Section 6, we simulate datasets of size n = 105 and a variety of
values for β1 and θa0, with θℓ0 = −0.8.

Table 7 shows the bias that results in maximum likelihood estimates of θa0 and estimates of ψ0

via inverse probability weighting (compare this with Table I of Young and Tchetgen Tchetgen,
2014). We can see that this is indeed still small, implying that our simulation method works as
expected.

G Instrumental Variables

One common causal approach, when faced with unobserved confounding, is to use an instrumental
variables (IV) model, as shown in Figure 4. In this case interest may be in the average causal effect
which is a function of the quantity pY |X(y | do(x)); other popular IV approaches consider causal
estimands such as the ‘complier causal effect’ or the ‘effect of treatment on the treated’ which we
do not further address, here. The average causal effect, if everything is linear, can be identified
by the ratio Cov(Z, Y )/Cov(Z,X). More challenging is the case where the effect of X on Y is
non-linear.

We can use our framework to simulate from the general IV model, by explicitly including the
hidden variable U . We first parameterize the distribution of the ‘past’, i.e. (U,Z,X) so that U ⊥⊥ Z;
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then we take the distributions pY |X(y | do(x)) and the association parameter ϕ∗Y,UZ|X = ϕ∗Y,U |X so
as not to depend upon Z at all. This will allow us to simulate from an IV model, provided that
the pieces pUZX , p∗Y |X and ϕ∗Y U |X are chosen from a sufficiently rich family of distributions.

Specifically, suppose that we want to simulate from a particular model from Figure 4, with a
particular model for p∗Y |X(y |x) (presumably this is pY |X(y | do(x))). Then we should use the
following algorithm:

1. select a model θ∗Y |X for p∗Y |X(y |x).

2. choose a distribution for (U,Z,X) such that U and Z are independent;

3. choose a model for ϕ∗Y,U |X = ϕ∗Y,UZ|X (i.e. such that Y ⊥⊥ Z | X,U).

Now, combine these to obtain the resulting joint distribution. In particular note that even if
Y is binary, we can simulate using a copula model and then dichotomize Y from the resulting
continuous distribution. This works particularly well with a probit or logistic model, for example.

This gives a basic outline of how to represent an instrumental variable model so that we can
simulate exactly from (almost††) any model of this kind. To reiterate Section 4.2, we simulate by
sampling from p∗UZY |X , and then rejecting samples based on the value of pX|UZ/p

∗
X|UZ . However,

further work is needed to extend this to structural mean models for IV analyses. These build on
a particular no-effect modification assumption within a marginal (over unobserved confounders)
model that is conditional on the natural treatment value and the IV, a restriction which cannot
always be represented in a structural equation type model (Robins and Rotnitzky, 2004; Clarke
and Windmeijer, 2010).
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