

A re-appraisal of fixed effect(s) meta-analysis

Ken Rice, Julian Higgins & Thomas Lumley

Universities of Washington, Bristol & Auckland

Overview

- Fixed-effectS meta-analysis answers a sensible question regardless of heterogeneity
- Other questions can also be sensible
- Fixed-effect**S** methods extend to useful measures of heterogeneity and meta-regression, small-sample corrections and Bayesian inference
- Rather than assess a model as true/false, assess what question an analysis answers. (These are not the same)

http://tinyurl.com/fixef has these slides and more.

Meta-analyzing trials^{*} to estimate some overall effect;

	Zinc	Placebo			Zinc Placebo		
Study	N Mea	n SD	N	Mean	SD	better better	Mean Difference, 95% CI
Douglas 1987	33 12.1	9.8	30	7.7	9.8	-	4.40 [-0.45 , 9.25]
Petrus 1998	52 4.4	1.4	49	5.1	2.8	⊨∎⊷	-0.70 [-1.57 , 0.17]
Prasad 2000	25 4.5	1.6	23	8.1	1.8	⊨∎→	-3.60 [-4.57 , -2.63]
Prasad 2008	25 4	1.04	25	7.12	1.26	H a rt	-3.12 [-3.76 , -2.48]
Turner 2000b	68 6.89	3.35	71	7.55	3.96	⊢ - ∎ 1	-0.66 [-1.88 , 0.56]
Turner 2000c	72 7.9	4.25	71	7.55	3.96	⊢	0.35 [–1.00 ,1.70]
Fixed effects, precision-weighted average (PWA) estimator					•	-2.04 [-2.45 , -1.64]	
Random effects, DerSimonian–Laird estimator					-	-1.21 [-2.69 , 0.28]	
						-5.00 0.00 5.0	00 10.00
						Mean Difference	(days)
_		_					

• Generic Q: Which average? Why?

* from Zinc for the Common Cold (2011) – Cochrane review of zinc acetate lozenges for reducing duration of cold symptoms (days)

Fixed effect (singular)

... based on the assumption that the results of each trial represents a statistical fluctuation around some common effect Steve Goodman Controlled Clinical Trials, 1989

$$\hat{\beta}_i \sim N(\beta_i, \sigma_i^2), \ 1 \leq i \leq k, \text{ by the CLT,}$$

where $\beta_i = \beta_0, \qquad 1 \leq i \leq k$

and noise in σ_i is negligible. Obvious (and optimal) estimate is the *inverse variance-weighted* or *precision-weighted* average:

$$\widehat{\beta}_F = \sum_{i=1}^k \frac{\frac{1}{\sigma_i^2}}{\sum_{i=1}^k \frac{1}{\sigma_i^2}} \widehat{\beta}_i, \quad \text{with } \operatorname{Var}[\widehat{\beta}_F] = \frac{1}{\sum_{i=1}^k \frac{1}{\sigma_i^2}}.$$

Fixed effectS (plural)

But assuming β_i exactly homogeneous is silly in (most) practice, as effects are not identical

- Environments & adherence differ (and much else)
- In my applied work, genetic ancestry also differs

But but but note that if

 $\widehat{eta}_i ~\sim~ N(eta_i, \sigma_i^2), ~1 \leq i \leq k,$ by the CLT (alone),

and noise in σ_i is negligible, then can still define

$$\hat{\beta}_F = \sum_{i=1}^k \frac{\frac{1}{\sigma_i^2}}{\sum_{i=1}^k \frac{1}{\sigma_i^2}} \hat{\beta}_i, \quad \text{which has } \operatorname{Var}[\hat{\beta}_F] = \frac{1}{\sum_{i=1}^k \frac{1}{\sigma_i^2}}$$

The fixed effects estimate provides valid statistical inference on an 'average' of the β_i , regardless of their homogeneity/heterogeneity

First, consider possible data from three studies;

Each $n_i = 200$ here. We assume all σ_i^2 known, for simplicity.

Population parameters those 3 studies are estimating;

Parameters are differences in means (β_i) and information per observation (ϕ_i) .

 β_{combine} is the mean difference (zinc vs placebo) with each subpopulation represented equally, i.e. weighted 1/1/1.

Weights here are 2/7/1, not 1/1/1 as before.

Still an average effect, but closer to β_2 than before.

Weights here are 7/1/2.

Weights here are 7/1/2 – smaller average effect, closer to β_1

Upweighting studies which are larger **and** more informative about their corresponding β_i , we can estimate population parameter

$$\beta_F = \frac{\sum_{i=1}^k \eta_i \phi_i \beta_i}{\sum_{i=1}^k \eta_i \phi_i} = \frac{\sum_{i=1}^k \frac{1}{\sigma_i^2} \beta_i}{\sum_{i=1}^k \frac{1}{\sigma_i^2}},$$

by
$$\hat{\beta}_F = \frac{\sum_{i=1}^k \frac{1}{\sigma_i^2} \hat{\beta}_i}{\sum_{i=1}^k \frac{1}{\sigma_i^2}}$$
, with $\operatorname{Var}[\hat{\beta}_F] = \frac{1}{\sum_{i=1}^k \frac{1}{\sigma_i^2}}$.

- β_F is the precision-weighted average, a.k.a. inverse-variance weighted average a.k.a. fixed effectS estimator note the plural!
- $\hat{\beta}_F$ is consistent for average effect β_F under regime where all $n_i \to \infty$ in fixed proportion
- Homogeneity, or tests for heterogeneity are **not required** to use $\hat{\beta}_F$ and its inference

Fixed effectS: general case

Homogeneity – or tests for heterogeneity – are **not required** to use $\hat{\beta}_F$ and its inference

Users who have only seen the fixed effect (singular) motivation tend to view it as the only reason for ever using $\hat{\beta}_F$.

That isn't right...

Is making omelets the **only** reason you **ever** buy eggs?

The basic ideas here are **not new**:

- Same average-effect argument already supports e.g. the Mantel-Haenszel estimate
- Fixed effect**S** arguments presented by e.g. Peto (1987), Fleiss (1993) and Hedges (various, e.g. Handbook of Research Synthesis), all noting the validity of β_F and inference using $\hat{\beta}_F$ under heterogeneity

Also:

- Lin & Zeng (based on Olkin & Sampson) show how efficiently $\hat{\beta}_F$ estimates same parameter as pooling data and adjusting for study which is often the ideal analysis.
- Can still motivate $\hat{\beta}_F$ when σ_i are estimated, though Var[$\hat{\beta}_F$] requires more care (Domínguez-Islas & Rice 2018)
- Can use them in Bayesian work, with exchangeable priors (Domínguez-Islas & Rice, under review) – much less sensitive than default methods

But what about heterogeneity?

We all know the '*flaw* of averages';

- Average effect β_F answers one question
- This does not mean other questions aren't interesting!

But what about heterogeneity?

A weighted variance of effects:

$$\zeta^2 = \frac{1}{\sum_{i=1}^k \eta_i \phi_i} \sum_{i=1}^k \eta_i \phi_i (\beta_i - \beta_F)^2.$$

And an empirical estimate of it:

$$\hat{\zeta}^2 = \frac{\sum_{i=1}^k \sigma_i^{-2} (\hat{\beta}_i - \hat{\beta}_F)^2 - (k-1)}{\sum_{i=1}^k \sigma_i^{-2}} = \frac{Q - (k-1)}{\sum_{i=1}^k \sigma_i^{-2}}$$

where Q is Cochran's Q and $I^2 = 1 - (k - 1)/Q$ (truncated at zero) are standard statistics for assessing homogeneity.

- (Weighted) standard deviation ζ measure on the β scale is easier to interpret than Q or I^2
- Inference on ζ far more stable than mean of (hypothetical) random effects distributions

But what about heterogeneity?

Meta-regression – essentially weighted linear regression of the $\hat{\beta}_i$ on known study-specific covariates x_i – also tells us about differences from zero, beyond the overall effect $\hat{\beta}_F$.

Using extensions of the arguments for $\hat{\beta}_F$, the standard linear meta-regression 'slope' estimate can be written

$$\hat{\beta}_{MR} = \frac{\sum_{i=1}^{k} w_i (x_i - \hat{x}_F)^2 \frac{\hat{\beta}_i - \hat{\beta}_F}{x_i - \hat{x}_F}}{\sum_{i'=1}^{k} w_{i'} (x_{i'} - \hat{x}_F)^2}, \text{ where } \hat{x}_F = \frac{\sum_{i=1}^{k} w_i x_i}{\sum_{i'=1}^{k} w_{i'}} \text{ and } w_i = \frac{1}{\sigma_i^2},$$

which with no further assumptions estimates

$$\beta_{MR} = \frac{\sum_{i=1}^{k} \eta_i \phi_i (x_i - x_F)^2 \frac{\beta_i - \beta}{x_i - x_F}}{\sum_{i'=1}^{k} \eta_{i'} \phi_{i'} (x_{i'} - x)^2}, \text{ where } x_F = \frac{\sum_{i=1}^{k} \eta_i \phi_i x_i}{\sum_{i'=1}^{k} \eta_{i'} \phi_{i'}}.$$

- Var[$\hat{\beta}_{MR}$] also available, via the β_i 's multivariate Normality
- ANOVA/ANCOVA breakdowns of total 'signal:noise' available to accompany ζ^2 and $\hat\beta_{MR}$ analysis

Are you going to stop now?

Summary, under standard conditions;

Name:	Common effect	Fixed effect S
Assumptions:		
	Effect size	Effect size
	All $\beta_i = \beta_0$	eta_i unrestricted
Plausible?	Rarely	Often!
\widehat{eta}_F estimates:	Single β_0	Sensible average, eta_F
Valid estimate?	Yes	Yes
StdErr[$\hat{\beta}_F$] valid?	pproxYes*	$pprox$ Yes *
Estimate heterogeneity?	Makes no sense	Yes, via ζ^2, Q, I^2
Meta regression?	Makes no sense	Yes, via \widehat{eta}_{MR}

* ... if we can ignore uncertainty about the σ_i^2

Acknowledgements

Thanks to:

Clara Dominguez-Islas

Thomas Lumley

Julian Higgins

Reminder: http://tinyurl.com/fixef for slides & more.