A re-appraisal of fixed effect(s) meta-analysis

Ken Rice, Julian Higgins \& Thomas Lumley

Universities of Washington, Bristol \& Auckland

Overview

- Fixed-effectS meta-analysis answers a sensible question regardless of heterogeneity
- Other questions can also be sensible
- Fixed-effectS methods extend to useful measures of heterogeneity and meta-regression, small-sample corrections and Bayesian inference
- Rather than assess a model as true/false, assess what question an analysis answers. (These are not the same)

http://tinyurl.com/fixef
 has these slides and more.

Generic example

Meta-analyzing trials* to estimate some overall effect;

Study	Zinc			Placebo			Zinc bette	Placebo better		Mean Difference, $95 \% \mathrm{Cl}$
	N	Mean	SD	N	Mean	SD				
Douglas 1987	33	12.1	9.8	30	7.7	9.8		.		$4.40[-0.45,9.25]$
Petrus 1998	52	4.4	1.4	49	5.1	2.8				-0.70[-1.57, 0.17]
Prasad 2000	25	4.5	1.6	23	8.1	1.8	$-$			-3.60[-4.57, -2.63]
Prasad 2008	25	4	1.04	25	7.12	1.26	-			-3.12[-3.76, -2.48]
Turner 2000b	68	6.89	3.35		7.55	3.96				-0.66[-1.88, 0.56]
Turner 2000c	72	7.9	4.25		7.55	3.96		-		$0.35[-1.00,1.70]$
Fixed effects, precision-weighted average (PWA) estimator							\bullet			-2.04[-2.45, -1.64]
Random effects, DerSimonian-Laird estimator										-1.21[-2.69, 0.28]
							\square	- 1	7	
							-5.00	5.00	10.00	
							Mean	Difference (d		

- Generic Q: Which average? Why?
* from Zinc for the Common Cold (2011) - Cochrane review of zinc acetate lozenges for reducing duration of cold symptoms (days)

Fixed effect (singular)

... based on the assumption that the results of each trial represents a statistical fluctuation around some common effect Steve Goodman Controlled Clinical Trials, 1989

In the fixed effect model for k studies we assume

$$
\begin{array}{rll}
\widehat{\beta}_{i} & \sim N\left(\beta_{i}, \sigma_{i}^{2}\right), & 1 \leq i \leq k, \text { by the CLT, } \\
\text { where } \beta_{i} & =\beta_{0}, & 1 \leq i \leq k
\end{array}
$$

and noise in σ_{i} is negligible. Obvious (and optimal) estimate is the inverse variance-weighted or precision-weighted average:

$$
\widehat{\beta}_{F}=\sum_{i=1}^{k} \frac{\frac{1}{\sigma_{i}^{2}}}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}} \widehat{\beta}_{i}, \quad \text { with } \operatorname{Var}\left[\widehat{\beta}_{F}\right]=\frac{1}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}}
$$

Fixed effectS (plural)

But assuming β_{i} exactly homogeneous is silly in (most) practice, as effects are not identical

- Environments \& adherence differ (and much else)
- In my applied work, genetic ancestry also differs

But but but note that if

$$
\widehat{\beta}_{i} \sim N\left(\beta_{i}, \sigma_{i}^{2}\right), 1 \leq i \leq k, \text { by the CLT (alone) }
$$

and noise in σ_{i} is negligible, then can still define

$$
\widehat{\beta}_{F}=\sum_{i=1}^{k} \frac{\frac{1}{\sigma_{i}^{2}}}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}} \widehat{\beta}_{i}, \quad \text { which has } \operatorname{Var}\left[\widehat{\beta}_{F}\right]=\frac{1}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}}
$$

The fixed effectS estimate provides valid statistical inference on an 'average' of the β_{i}, regardless of their homogeneity/heterogeneity

Fixed effectS: what average?

First, consider possible data from three studies;

Each $n_{i}=200$ here. We assume all σ_{i}^{2} known, for simplicity.

Fixed effectS: what average?

Population parameters those 3 studies are estimating;

Zn Pbo
Pop'n \#1
Information ϕ_{1}

Zn Pbo
Pop'n \#2
Information ϕ_{2}

Zn Pbo
Pop'n \#3
Information ϕ_{3}

Parameters are differences in means (β_{i}) and information per observation (ϕ_{i}).

Fixed effectS: what average?

One overall population we might learn about;

Zn

Pbo
Combining \#1 and \#2 and \#3
$\beta_{\text {combine }}$ is the mean difference (zinc vs placebo) with each subpopulation represented equally, i.e. weighted $1 / 1 / 1$.

Fixed effectS: what average?

Another overall population we might learn about;

Weights here are $2 / 7 / 1$, not $1 / 1 / 1$ as before.

Fixed effectS: what average?

Another overall population we might learn about;

Combining \#1 and \#2 and \#3, in proportions $\eta_{1}, \eta_{2}, \eta_{3}$

Still an average effect, but closer to β_{2} than before.

Fixed effectS: what average?

And another; (obviously, there are unlimited possibilities)

$\mathrm{Zn} \quad \mathrm{Pbo}$
Proportion η_{1}
Information ϕ_{1}

$\underset{\text { Proportion } \eta_{2}}{\mathrm{Zn}}$
Information ϕ_{2}

$$
\begin{aligned}
& \mathrm{Zn} \quad \mathrm{Pbo} \\
& \text { Proportion } \eta_{3} \\
& \text { Information } \phi_{3}
\end{aligned}
$$

Weights here are $7 / 1 / 2$.

Fixed effectS: what average?

And another; (obviously, there are unlimited possibilities)

Weights here are $7 / 1 / 2$ - smaller average effect, closer to β_{1}

Fixed effectS: general case

Upweighting studies which are larger and more informative about their corresponding β_{i}, we can estimate population parameter

$$
\begin{gathered}
\beta_{F}=\frac{\sum_{i=1}^{k} \eta_{i} \phi_{i} \beta_{i}}{\sum_{i=1}^{k} \eta_{i} \phi_{i}}=\frac{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}} \beta_{i}}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}}, \\
\text { by } \widehat{\beta}_{F}=\frac{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}} \widehat{\beta}_{i}}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}}, \text { with } \operatorname{Var}\left[\widehat{\beta}_{F}\right]=\frac{1}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}} .
\end{gathered}
$$

- $\widehat{\beta}_{F}$ is the precision-weighted average, a.k.a. inverse-variance weighted average a.k.a. fixed effectS estimator - note the plural!
- $\widehat{\beta}_{F}$ is consistent for average effect β_{F} under regime where all $n_{i} \rightarrow \infty$ in fixed proportion
- Homogeneity, or tests for heterogeneity are not required to use $\widehat{\beta}_{F}$ and its inference

Fixed effectS: general case

Homogeneity - or tests for heterogeneity - are not required to use $\widehat{\beta}_{F}$ and its inference

Users who have only seen the fixed effect (singular) motivation tend to view it as the only reason for ever using $\widehat{\beta}_{F}$.

That isn't right...

Is making omelets the only reason you ever buy eggs?

Fixed effectS: general case

The basic ideas here are not new:

- Same average-effect argument already supports e.g. the Mantel-Haenszel estimate
- Fixed effectS arguments presented by e.g. Peto (1987), Fleiss (1993) and Hedges (various, e.g. Handbook of Research Synthesis), all noting the validity of β_{F} and inference using $\widehat{\beta}_{F}$ under heterogeneity

Also:

- Lin \& Zeng (based on Olkin \& Sampson) show how efficiently $\widehat{\beta}_{F}$ estimates same parameter as pooling data and adjusting for study - which is often the ideal analysis.
- Can still motivate $\widehat{\beta}_{F}$ when σ_{i} are estimated, though $\operatorname{Var}\left[\widehat{\beta}_{F}\right]$ requires more care (Domínguez-Islas \& Rice 2018)
- Can use them in Bayesian work, with exchangeable priors (Domínguez-Islas \& Rice, under review) - much less sensitive than default methods

But what about heterogeneity?

We all know the 'flaw of averages';

- Average effect β_{F} answers one question
- This does not mean other questions aren't interesting!

But what about heterogeneity?

A weighted variance of effects:

$$
\zeta^{2}=\frac{1}{\sum_{i=1}^{k} \eta_{i} \phi_{i}} \sum_{i=1}^{k} \eta_{i} \phi_{i}\left(\beta_{i}-\beta_{F}\right)^{2}
$$

And an empirical estimate of it:

$$
\widehat{\zeta}^{2}=\frac{\sum_{i=1}^{k} \sigma_{i}^{-2}\left(\widehat{\beta}_{i}-\widehat{\beta}_{F}\right)^{2}-(k-1)}{\sum_{i=1}^{k} \sigma_{i}^{-2}}=\frac{Q-(k-1)}{\sum_{i=1}^{k} \sigma_{i}^{-2}}
$$

where Q is Cochran's Q and $I^{2}=1-(k-1) / Q$ (truncated at zero) are standard statistics for assessing homogeneity.

- (Weighted) standard deviation ζ - measure on the β scale is easier to interpret than Q or I^{2}
- Inference on ζ far more stable than mean of (hypothetical) random effects distributions

But what about heterogeneity?

Meta-regression - essentially weighted linear regression of the $\widehat{\beta}_{i}$ on known study-specific covariates x_{i} - also tells us about differences from zero, beyond the overall effect $\widehat{\beta}_{F}$.

Using extensions of the arguments for $\widehat{\beta}_{F}$, the standard linear meta-regression 'slope' estimate can be written
$\widehat{\beta}_{M R}=\frac{\sum_{i=1}^{k} w_{i}\left(x_{i}-\widehat{x}_{F}\right)^{2} \frac{\widehat{\beta}_{i}-\widehat{\beta}_{F}}{x_{i}-\widehat{x}_{F}}}{\sum_{i^{\prime}=1}^{k} w_{i^{\prime}}\left(x_{i^{\prime}}-\widehat{x}_{F}\right)^{2}}$, where $\widehat{x}_{F}=\frac{\sum_{i=1}^{k} w_{i} x_{i}}{\sum_{i^{\prime}=1}^{k} w_{i^{\prime}}}$ and $w_{i}=\frac{1}{\sigma_{i}^{2}}$,
which with no further assumptions estimates

$$
\beta_{M R}=\frac{\sum_{i=1}^{k} \eta_{i} \phi_{i}\left(x_{i}-x_{F}\right)^{2} \frac{\beta_{i}-\beta}{x_{i}-x_{F}}}{\sum_{i^{\prime}=1}^{k} \eta_{i^{\prime}} \phi_{i^{\prime}}\left(x_{i^{\prime}}-x\right)^{2}}, \text { where } x_{F}=\frac{\sum_{i=1}^{k} \eta_{i} \phi_{i} x_{i}}{\sum_{i^{\prime}=1}^{k} \eta_{i^{\prime}} \phi_{i^{\prime}}} .
$$

- $\operatorname{Var}\left[\widehat{\beta}_{M R}\right]$ also available, via the β_{i} 's multivariate Normality
- ANOVA/ANCOVA breakdowns of total 'signal:noise' available to accompany ζ^{2} and $\widehat{\beta}_{M R}$ analysis

Are you going to stop now?

Summary, under standard conditions;

Name:	Common effect	Fixed effects
Assumptions:		
	Effect size	Effect size
	All $\beta_{i}=\beta_{0}$	β_{i} unrestricted
Plausible?	Rarely	Often!
$\widehat{\beta}_{F}$ estimates:	Single β_{0}	Sensible average, β_{F}
Valid estimate?	Yes	Yes
StdErr[$\widehat{\beta}_{F}$] valid?	\approx Yes*	حYes*
Estimate heterogeneity?	Makes no sense	Yes, via ζ^{2}, Q, I^{2}
Meta regression?	Makes no sense	Yes, via $\widehat{\beta}_{M R}$

Acknowledgements

Thanks to:

Reminder: http://tinyurl.com/fixef for slides \& more.

