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High-dimensional data

Many modern applications, e.g. in genomics, can have the number of
predictors p greatly exceeding the number of observations n.

In these settings, variable selection is particularly important.

(a) Microarray data (b) Sparsity
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What is Stability Selection

Stability Selection (Meinshausen & Bühlmann, 2010) is a very general
technique designed to improve the performance of a variable selection
algorithm.

It is based on aggregating the results of applying a selection
procedure to subsamples of the data.

A key feature of Stability Selection is the error control provided in the
form an upper bound on the expected number of falsely selected
variables.
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A general model for variable selection

Let Z1, . . . ,Zn be i.i.d. random vectors.

We think of indices S of some components of Zi as being ‘signal
variables’, and the rest N as ‘noise variables’.

E.g. Zi = (Xi ,Yi ), with covariate vector Xi ∈ Rp, response Yi ∈ R and
log-likelihood of the form

n∑
i=1

L(Yi ,X
T
i β)

with β ∈ Rp. Then S = {k : βk 6= 0} and N = {k : βk = 0}. Thus
S ⊆ {1, . . . , p} and N = {1, . . . , p} \ S .

A variable selection procedure is a statistic Ŝn := Ŝn(Z1, . . . ,Zn) taking
values in the set of all subsets of {1, . . . , p}.
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How does Stability Selection work?

For a subset A = {i1, . . . , i|A|} ⊆ {1, . . . , n}, write

Ŝ := Ŝ|A|(Zi1 , . . . ,Zi|A|).

Meinshausen and Bühlmann defined

Π̂(k) :=

(
n

bn/2c

)−1 ∑
A⊆{1,...,n},
|A|=bn/2c

1{k∈Ŝ(A)}.

Stability selection fixes τ ∈ [0, 1] and selects ŜSS
n,τ = {k : Π̂(k) ≥ τ}.
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Error control of Stability Selection

Assume that {1{k∈Ŝbn/2c} : k ∈ N} is exchangeable, and that Ŝbn/2c is no

worse than random guessing:

E(|Ŝbn/2c ∩ S |)
E(|Ŝbn/2c ∩ N|)

≤ |S |
|N|

.

Then, for τ ∈ (12 , 1],

E(|ŜSS
n,τ ∩ N|) ≤ 1

2τ − 1

(E|Ŝbn/2c|)2

p
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Error control discussion

In principle, this theorem allows to user to choose τ based on the expected
number of false positives they are willing to tolerate. However:

The theorem requires two conditions, and the exchangeability
assumption is very strong

There are too many subsets to evaluate ŜSS
n,τ exactly when n ≥ 30

The bound tends to be rather weak.
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Complementary Pairs Stability Selection (CPSS)

Let {(A2j−1,A2j) : j = 1, . . . ,B} be randomly chosen independent pairs of
subsets of {1, . . . , n} of size bn/2c such that A2j−1 ∩ A2j = ∅.

Define

Π̂B(k) :=
1

2B

B∑
j=1

1{k∈Ŝ(Aj )}

and select ŜCPSS
n,τ := {k : Π̂B(k) ≥ τ}.
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Worst case error control bounds

Define the selection probability of variable k to be pk,n = P(k ∈ Ŝn).

We can divide our variables into those that have low and high selection
probabilities: for θ ∈ [0, 1], let

Lθ := {k : pk,bn/2c ≤ θ} and Hθ := {k : pk,bn/2c > θ}.

If τ ∈ (12 , 1], then

E|ŜCPSS
n,τ ∩ Lθ| ≤

θ

2τ − 1
E|Ŝbn/2c ∩ Lθ|.

Moreover, if τ ∈ [0, 12), then

E|N̂CPSS
n,τ ∩ Hθ| ≤

1− θ
1− 2τ

E|N̂bn/2c ∩ Hθ|.
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Illustration and discussion

Suppose p = 1000 and q := E|Ŝbn/2c| = 50. On average, CPSS with
τ = 0.6 selects no more than a quarter of the variables that have below
average selection probability under Ŝbn/2c.

The theorem requires no exchangeability or random guessing
conditions

It holds even when B = 1

If exchangeability and random guessing conditions do hold, then we
recover

E|ŜCPSS
n,τ ∩ N| ≤ 1

2τ − 1

(q
p

)
E|Ŝbn/2c ∩ Lq/p| ≤

1

2τ − 1

(q2
p

)
.
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Proof

Let

Π̃B(k) :=
1

B

B∑
j=1

1{k∈Ŝ(A2j−1)}1{k∈Ŝ(A2j )}.

Note that E{Π̃B(k)} = p2k,bn/2c. Now

0 ≤ 1

B

B∑
j=1

(1− 1{k∈Ŝ(A2j−1)})(1− 1{k∈Ŝ(A2j )})

= 1− 2Π̂B(k) + Π̃B(k).

Thus

P{Π̂B(k) ≥ τ} ≤ P{12(1 + Π̃B(k)) ≥ τ} = P{Π̃B(k) ≥ 2τ − 1}

≤ 1

2τ − 1
p2k,bn/2c.
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Proof 2

It follows that

E|ŜCPSS
n,τ ∩ Lθ| = E

( ∑
k:pk,bn/2c≤θ

1{k∈ŜCPSS
n,τ }

)
=

∑
k:pk,bn/2c≤θ

P(k ∈ ŜCPSS
n,τ ))

≤ 1

2τ − 1

∑
k:pk,bn/2c≤θ

p2k,bn/2c ≤
θ

2τ − 1
E|Ŝbn/2c ∩ Lθ|,

where the final inequality follows because

E|Ŝbn/2c ∩ Lθ| = E
( ∑

k:pk,bn/2c≤θ
1{k∈Ŝbn/2c}

)
=

∑
k:pk,bn/2c≤θ

pk,bn/2c.
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Bounds with no assumptions whatsoever

If Z1, . . . ,Zn are not identically distributed, the same bound holds,
provided in Lθ we redefine

pk,bn/2c :=

(
n

bn/2c

)−1 ∑
|A|=n/2

P{k ∈ Ŝbn/2c(A)}.

Similarly, if Z1, . . . ,Zn are not independent, the same bound holds, with
p2k,bn/2c as the average of

P{k ∈ Ŝbn/2c(A1) ∩ Ŝbn/2c(A2)}

over all complementary pairs A1,A2.
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Can we improve on Markov’s inequality?
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Figure : Typical and extremal pmfs of Π̃25(k) for a low selection probability
variable k.
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Can we improve on Markov’s inequality?
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Improved bound under unimodality

Suppose that the distribution of Π̃B(k) is unimodal for each k ∈ Lθ. If
τ ∈ {12 + 1

B ,
1
2 + 3

2B ,
1
2 + 2

B , . . . , 1}, then

E|ŜCPSS
n,τ ∩ Lθ| ≤ C (τ,B)θE|Ŝbn/2c ∩ Lθ|,

where, when θ ≤ 1/
√

3,

C (τ,B) =


1

2(2τ − 1− 1/2B)
if τ ∈ (min(12 + θ2, 12 + 1

2B + 3
4θ

2), 34 ]

4(1− τ + 1/2B)

1 + 1/B
if τ ∈ (34 , 1].
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Extremal distribution under unimodality
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Figure : Typical and extremal pmfs of Π̃25(k) for a low selection probability
variable k.
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Extremal distribution under unimodality
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Figure : Typical and extremal pmfs of Π̃25(k) for a low selection probability
variable k.
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The r -concavity constraint

r -concavity provides a continuum of constraints that interpolate between
unimodality and log-concavity.

A non-negative function f on an interval I ⊂ R is r -concave with r < 0 if
f r is convex on I .

A pmf f on {0, 1/B, . . . , 1} is r -concave if the linear interpolant to
{(i , f (i/B)) : i = 0, 1, . . . ,B} is r -concave. The constraint becomes
weaker as r increases to 0.
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Further improvements under r -concavity

Suppose Π̃B(k) is r -concave for all k ∈ Lθ. Then for τ = (12 , 1],

E|ŜCPSS
n,τ ∩ Lθ| ≤ D(θ2, 2τ − 1,B, r)|Lθ|

where D can be evaluated numerically.

Our simulations suggest r = −1/2 is a reasonable choice.
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Extremal distribution under −1/2-concavity
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Figure : Typical and extremal pmfs of Π̃25(k) for a low selection probability
variable k.
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Extremal distribution under −1/2-concavity
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Figure : Typical and extremal pmfs of Π̃25(k) for a low selection probability
variable k.
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r = −1/2 is sensible
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onwards.
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Reducing the threshold τ

Suppose Π̂B(k) is −1/4-concave, and that Π̃B(k) is −1/2-concave for all
k ∈ Lθ. Then

E|ŜCPSS
n,τ ∩ Lθ| ≤ min{D(θ2, 2τ − 1,B,−1/2), D(θ, τ, 2B,−1/2)} |Lθ|,

for all τ ∈ (θ, 1]. (We take D(·, t, ·, ·) = 1 for t ≤ 0.)
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Improved bounds
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Figure : Comparison of the bounds on E|ŜCPSS
n,τ ∩ Lq/p| where p = 1000, q = 50

showing the M & B (dashes), worst case (dot dash), unimodal and r -concave
bounds, and the true value for a simulated example.
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Simulation study

Linear model Yi = XT
i β + εi with Xi ∈ Np(0,Σ).

Toeplitz covariance Σij = ρ||i−j |−p/2|−p/2.

β has sparsity s with s/2 equally spaced within [−1,−0.5] and s/2
equally spaced within [0.5, 1].

n = 200, p = 1000.

Use Lasso and seek E|ŜCPSS
n,τ ∩ Lq/p| ≤ `. Fix q =

√
0.8`p and for

worst-case bound choose τ = 0.9.

Choose τ̃ from r -concave bound, oracle τ∗, and oracle λ∗ for Lasso
Ŝλ
∗

n .

Compare

E|ŜCPSS
n,0.9 ∩ S |

E|ŜCPSS
n,τ∗ ∩ S |

,
E|ŜCPSS

n,τ̃ ∩ S |
E|ŜCPSS

n,τ∗ ∩ S |
and

E|Ŝλ∗n ∩ S |
E|ŜCPSS

n,τ∗ ∩ S |
.
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Simulation results
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Figure : Expected number or true positives using worst case and r -concave
bounds, and an oracle Lasso procedure (crosses), as a fraction of the expected
number of true positives for an oracle CPSS procedure. The y -axis label gives the
desired error control level `.
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Summary

CPSS can be used with any variable selection procedure.

We can bound the average number of low selection probability
variables chosen by CPSS with no conditions on the model or original
selection procedure needed.

Under mild conditions e.g. unimodality or r -concavity, the bounds can
be strengthened, yielding tight error control.

This allows the user to choose the threshold τ in an effective way.

R packages: mboost and stabsel.

Thank you for listening.
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