Variable selection with error control: Another look at Stability Selection

Richard J. Samworth and Rajen D. Shah University of Cambridge

RSS Journal Webinar 25 October 2017

High-dimensional data

Many modern applications, e.g. in genomics, can have the number of predictors p greatly exceeding the number of observations n.

In these settings, variable selection is particularly important.

(a) Microarray data

(b) Sparsity

What is Stability Selection

- Stability Selection (Meinshausen \& Bühlmann, 2010) is a very general technique designed to improve the performance of a variable selection algorithm.
- It is based on aggregating the results of applying a selection procedure to subsamples of the data.
- A key feature of Stability Selection is the error control provided in the form an upper bound on the expected number of falsely selected variables.

A general model for variable selection

Let Z_{1}, \ldots, Z_{n} be i.i.d. random vectors.
We think of indices S of some components of Z_{i} as being 'signal variables', and the rest N as 'noise variables'.
E.g. $Z_{i}=\left(X_{i}, Y_{i}\right)$, with covariate vector $X_{i} \in \mathbb{R}^{p}$, response $Y_{i} \in \mathbb{R}$ and log-likelihood of the form

$$
\sum_{i=1}^{n} L\left(Y_{i}, X_{i}^{T} \beta\right)
$$

with $\beta \in \mathbb{R}^{p}$. Then $S=\left\{k: \beta_{k} \neq 0\right\}$ and $N=\left\{k: \beta_{k}=0\right\}$. Thus $S \subseteq\{1, \ldots, p\}$ and $N=\{1, \ldots, p\} \backslash S$.

A variable selection procedure is a statistic $\hat{S}_{n}:=\hat{S}_{n}\left(Z_{1}, \ldots, Z_{n}\right)$ taking values in the set of all subsets of $\{1, \ldots, p\}$.

How does Stability Selection work?

For a subset $A=\left\{i_{1}, \ldots, \dot{i}_{|A|}\right\} \subseteq\{1, \ldots, n\}$, write

$$
\hat{S}:=\hat{S}_{|A|}\left(Z_{i_{1}}, \ldots, Z_{i_{|A|}}\right)
$$

Meinshausen and Bühlmann defined

$$
\hat{\Pi}(k):=\binom{n}{\lfloor n / 2\rfloor}^{-1} \sum_{\substack{A \subseteq\{1, \ldots, n\},|\bar{A}|=\lfloor n / 2\rfloor}} \mathbb{1}_{\{k \in \hat{S}(A)\}} .
$$

Stability selection fixes $\tau \in[0,1]$ and selects $\hat{S}_{n, \tau}^{S S}=\{k: \hat{\Pi}(k) \geq \tau\}$.

Error control of Stability Selection

Assume that $\left\{\mathbb{1}_{\left\{k \in \hat{S}_{\lfloor n / 2\rfloor}\right\}}: k \in N\right\}$ is exchangeable, and that $\hat{S}_{\lfloor n / 2\rfloor}$ is no worse than random guessing:

$$
\frac{\mathbb{E}\left(\left|\hat{S}_{\lfloor n / 2\rfloor} \cap S\right|\right)}{\mathbb{E}\left(\left|\hat{S}_{\lfloor n / 2\rfloor} \cap N\right|\right)} \leq \frac{|S|}{|N|}
$$

Then, for $\tau \in\left(\frac{1}{2}, 1\right]$,

$$
\mathbb{E}\left(\left|\hat{S}_{n, \tau}^{S S} \cap N\right|\right) \leq \frac{1}{2 \tau-1} \frac{\left(\mathbb{E}\left|\hat{S}_{\lfloor n / 2\rfloor}\right|\right)^{2}}{p}
$$

Error control discussion

In principle, this theorem allows to user to choose τ based on the expected number of false positives they are willing to tolerate. However:

- The theorem requires two conditions, and the exchangeability assumption is very strong
- There are too many subsets to evaluate $\hat{S}_{n, \tau}^{S S}$ exactly when $n \geq 30$
- The bound tends to be rather weak.

Complementary Pairs Stability Selection (CPSS)

Let $\left\{\left(A_{2 j-1}, A_{2 j}\right): j=1, \ldots, B\right\}$ be randomly chosen independent pairs of subsets of $\{1, \ldots, n\}$ of size $\lfloor n / 2\rfloor$ such that $A_{2 j-1} \cap A_{2 j}=\emptyset$.

Define

$$
\hat{\Pi}_{B}(k):=\frac{1}{2 B} \sum_{j=1}^{B} \mathbb{1}_{\left\{k \in \hat{S}\left(A_{j}\right)\right\}}
$$

and select $\hat{S}_{n, \tau}^{\mathrm{CPSS}}:=\left\{k: \hat{\Pi}_{B}(k) \geq \tau\right\}$.

Worst case error control bounds

Define the selection probability of variable k to be $p_{k, n}=\mathbb{P}\left(k \in \hat{S}_{n}\right)$.
We can divide our variables into those that have low and high selection probabilities: for $\theta \in[0,1]$, let

$$
L_{\theta}:=\left\{k: p_{k,\lfloor n / 2\rfloor} \leq \theta\right\} \quad \text { and } \quad H_{\theta}:=\left\{k: p_{k,\lfloor n / 2\rfloor}>\theta\right\} .
$$

If $\tau \in\left(\frac{1}{2}, 1\right]$, then

$$
\mathbb{E}\left|\hat{S}_{n, \tau}^{\mathrm{CPSS}} \cap L_{\theta}\right| \leq \frac{\theta}{2 \tau-1} \mathbb{E}\left|\hat{S}_{\lfloor n / 2\rfloor} \cap L_{\theta}\right| .
$$

Moreover, if $\tau \in\left[0, \frac{1}{2}\right)$, then

$$
\mathbb{E}\left|\hat{N}_{n, \tau}^{\mathrm{CPSS}} \cap H_{\theta}\right| \leq \frac{1-\theta}{1-2 \tau} \mathbb{E}\left|\hat{N}_{\lfloor n / 2\rfloor} \cap H_{\theta}\right| .
$$

Illustration and discussion

Suppose $p=1000$ and $q:=\mathbb{E}\left|\hat{S}_{\lfloor n / 2\rfloor}\right|=50$. On average, CPSS with $\tau=0.6$ selects no more than a quarter of the variables that have below average selection probability under $\hat{S}_{\lfloor n / 2\rfloor}$.

- The theorem requires no exchangeability or random guessing conditions
- It holds even when $B=1$
- If exchangeability and random guessing conditions do hold, then we recover

$$
\mathbb{E}\left|\hat{S}_{n, \tau}^{\mathrm{CPSS}} \cap N\right| \leq \frac{1}{2 \tau-1}\left(\frac{q}{p}\right) \mathbb{E}\left|\hat{S}_{\lfloor n / 2\rfloor} \cap L_{q / p}\right| \leq \frac{1}{2 \tau-1}\left(\frac{q^{2}}{p}\right)
$$

Proof

Let

$$
\tilde{\Pi}_{B}(k):=\frac{1}{B} \sum_{j=1}^{B} \mathbb{1}_{\left\{k \in \hat{S}\left(A_{2 j-1}\right)\right\}} \mathbb{1}_{\left\{k \in \hat{S}\left(A_{2 j}\right)\right\}} .
$$

Note that $\mathbb{E}\left\{\tilde{\Pi}_{B}(k)\right\}=p_{k,\lfloor n / 2\rfloor}^{2}$. Now

$$
\begin{aligned}
0 & \leq \frac{1}{B} \sum_{j=1}^{B}\left(1-\mathbb{1}_{\left\{k \in \hat{S}\left(A_{2 j-1}\right)\right\}}\right)\left(1-\mathbb{1}_{\left\{k \in \hat{S}\left(A_{2 j}\right)\right\}}\right) \\
& =1-2 \hat{\Pi}_{B}(k)+\tilde{\Pi}_{B}(k)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathbb{P}\left\{\hat{\Pi}_{B}(k) \geq \tau\right\} \leq \mathbb{P}\left\{\frac{1}{2}\left(1+\tilde{\Pi}_{B}(k)\right) \geq \tau\right\} & =\mathbb{P}\left\{\tilde{\Pi}_{B}(k) \geq 2 \tau-1\right\} \\
& \leq \frac{1}{2 \tau-1} p_{k,\lfloor n / 2\rfloor}^{2}
\end{aligned}
$$

Proof 2

It follows that

$$
\begin{aligned}
\mathbb{E}\left|\hat{S}_{n, \tau}^{\mathrm{CPSS}} \cap L_{\theta}\right| & \left.=\mathbb{E}\left(\sum_{k: p_{k,\lfloor n / 2\rfloor} \leq \theta} \mathbb{1}_{\left\{k \in \hat{S}_{n, \tau}^{\mathrm{CPSS}\}}\right.}\right)=\sum_{k: p_{k,\lfloor n / 2\rfloor} \leq \theta} \mathbb{P}\left(k \in \hat{S}_{n, \tau}^{\mathrm{CPSS}}\right)\right) \\
& \leq \frac{1}{2 \tau-1} \sum_{k: p_{k,\lfloor n / 2\rfloor} \leq \theta} p_{k,\lfloor n / 2\rfloor}^{2} \leq \frac{\theta}{2 \tau-1} \mathbb{E}\left|\hat{S}_{\lfloor n / 2\rfloor} \cap L_{\theta}\right|,
\end{aligned}
$$

where the final inequality follows because

$$
\mathbb{E}\left|\hat{S}_{\lfloor n / 2\rfloor} \cap L_{\theta}\right|=\mathbb{E}\left(\sum_{k: p_{k,\lfloor\lfloor/ 2\rfloor} \leq \theta} \mathbb{1}_{\left\{k \in \hat{S}_{\lfloor n / 2\rfloor}\right\}}\right)=\sum_{k: p_{k,\lfloor n / 2\rfloor} \leq \theta} p_{k,\lfloor n / 2\rfloor}
$$

Bounds with no assumptions whatsoever

If Z_{1}, \ldots, Z_{n} are not identically distributed, the same bound holds, provided in L_{θ} we redefine

$$
p_{k,\lfloor n / 2\rfloor}:=\binom{n}{\lfloor n / 2\rfloor}^{-1} \sum_{|A|=n / 2} \mathbb{P}\left\{k \in \hat{S}_{\lfloor n / 2\rfloor}(A)\right\}
$$

Similarly, if Z_{1}, \ldots, Z_{n} are not independent, the same bound holds, with $p_{k,\lfloor n / 2\rfloor}^{2}$ as the average of

$$
\mathbb{P}\left\{k \in \hat{S}_{\lfloor n / 2\rfloor}\left(A_{1}\right) \cap \hat{S}_{\lfloor n / 2\rfloor}\left(A_{2}\right)\right\}
$$

over all complementary pairs A_{1}, A_{2}.

Can we improve on Markov's inequality?

Figure : Typical and extremal pmfs of $\tilde{\Pi}_{25}(k)$ for a low selection probability variable k.

Can we improve on Markov's inequality?

Figure: Typical and extremal pmfs of $\tilde{\Pi}_{25}(k)$ for a low selection probability variable k.

Improved bound under unimodality

Suppose that the distribution of $\tilde{\Pi}_{B}(k)$ is unimodal for each $k \in L_{\theta}$. If $\tau \in\left\{\frac{1}{2}+\frac{1}{B}, \frac{1}{2}+\frac{3}{2 B}, \frac{1}{2}+\frac{2}{B}, \ldots, 1\right\}$, then

$$
\mathbb{E}\left|\hat{S}_{n, \tau}^{\mathrm{CPSS}} \cap L_{\theta}\right| \leq C(\tau, B) \theta \mathbb{E}\left|\hat{S}_{\lfloor n / 2\rfloor} \cap L_{\theta}\right|,
$$

where, when $\theta \leq 1 / \sqrt{3}$,

$$
C(\tau, B)= \begin{cases}\frac{1}{2(2 \tau-1-1 / 2 B)} & \text { if } \tau \in\left(\min \left(\frac{1}{2}+\theta^{2}, \frac{1}{2}+\frac{1}{2 B}+\frac{3}{4} \theta^{2}\right), \frac{3}{4}\right] \\ \frac{4(1-\tau+1 / 2 B)}{1+1 / B} & \text { if } \tau \in\left(\frac{3}{4}, 1\right] .\end{cases}
$$

Extremal distribution under unimodality

Figure: Typical and extremal pmfs of $\tilde{\Pi}_{25}(k)$ for a low selection probability variable k.

Extremal distribution under unimodality

Figure: Typical and extremal pmfs of $\tilde{\Pi}_{25}(k)$ for a low selection probability variable k.

The r-concavity constraint

r-concavity provides a continuum of constraints that interpolate between unimodality and log-concavity.

A non-negative function f on an interval $I \subset \mathbb{R}$ is r-concave with $r<0$ if f^{r} is convex on l.

A pmf f on $\{0,1 / B, \ldots, 1\}$ is r-concave if the linear interpolant to $\{(i, f(i / B)): i=0,1, \ldots, B\}$ is r-concave. The constraint becomes weaker as r increases to 0 .

Further improvements under r-concavity

Suppose $\tilde{\Pi}_{B}(k)$ is r-concave for all $k \in L_{\theta}$. Then for $\tau=\left(\frac{1}{2}, 1\right]$,

$$
\mathbb{E}\left|\hat{S}_{n, \tau}^{\mathrm{CPSS}} \cap L_{\theta}\right| \leq D\left(\theta^{2}, 2 \tau-1, B, r\right)\left|L_{\theta}\right|
$$

where D can be evaluated numerically.
Our simulations suggest $r=-1 / 2$ is a reasonable choice.

Extremal distribution under $-1 / 2$-concavity

Figure: Typical and extremal pmfs of $\tilde{\Pi}_{25}(k)$ for a low selection probability variable k.

Extremal distribution under $-1 / 2$-concavity

Figure: Typical and extremal pmfs of $\tilde{\Pi}_{25}(k)$ for a low selection probability variable k.

$r=-1 / 2$ is sensible

Typical and extremal pmfs raised to the power $-1 / 2$.

Tail probabilities from 0.2 onwards.

Reducing the threshold τ

Suppose $\hat{\Pi}_{B}(k)$ is $-1 / 4$-concave, and that $\tilde{\Pi}_{B}(k)$ is $-1 / 2$-concave for all $k \in L_{\theta}$. Then

$$
\mathbb{E}\left|\hat{S}_{n, \tau}^{\mathrm{CPSS}} \cap L_{\theta}\right| \leq \min \left\{D\left(\theta^{2}, 2 \tau-1, B,-1 / 2\right), D(\theta, \tau, 2 B,-1 / 2)\right\}\left|L_{\theta}\right|,
$$

for all $\tau \in(\theta, 1]$. (We take $D(\cdot, t, \cdot, \cdot)=1$ for $t \leq 0$.)

Improved bounds

Figure : Comparison of the bounds on $\mathbb{E}\left|\hat{S}_{n, \tau}^{\mathrm{CPSS}} \cap L_{q / p}\right|$ where $p=1000, q=50$ showing the M \& B (dashes), worst case (dot dash), unimodal and r-concave bounds, and the true value for a simulated example.

Simulation study

- Linear model $Y_{i}=X_{i}^{\top} \beta+\varepsilon_{i}$ with $X_{i} \in N_{p}(0, \Sigma)$.
- Toeplitz covariance $\Sigma_{i j}=\rho^{||i-j|-p / 2|-p / 2}$.
- β has sparsity s with $s / 2$ equally spaced within $[-1,-0.5]$ and $s / 2$ equally spaced within $[0.5,1]$.
- $n=200, p=1000$.
- Use Lasso and seek $\mathbb{E}\left|\hat{S}_{n, \tau}^{\mathrm{CPSS}} \cap L_{q / p}\right| \leq \ell$. Fix $q=\sqrt{0.8 \ell p}$ and for worst-case bound choose $\tau=0.9$.
- Choose $\tilde{\tau}$ from r-concave bound, oracle τ^{*}, and oracle λ^{*} for Lasso $\hat{S}_{n}^{\lambda^{*}}$.
Compare

$$
\frac{\mathbb{E}\left|\hat{S}_{n, 0.9}^{\mathrm{CPSS}} \cap S\right|}{\mathbb{E}\left|\hat{S}_{n, \tau^{*}}^{\mathrm{CPSS}} \cap S\right|}, \frac{\mathbb{E}\left|\hat{S}_{n, \tilde{\tau}}^{\mathrm{CPSS}} \cap S\right|}{\mathbb{E}\left|\hat{S}_{n, \tau^{*}}^{\mathrm{CPSS}} \cap S\right|} \text { and } \frac{\mathbb{E}\left|\hat{S}_{n}^{\lambda^{*}} \cap S\right|}{\mathbb{E}\left|\hat{S}_{n, \tau^{*}}^{\mathrm{CPSS}} \cap S\right|}
$$

Simulation results

Figure: Expected number or true positives using worst case and r-concave bounds, and an oracle Lasso procedure (crosses), as a fraction of the expected number of true positives for an oracle CPSS procedure. The y-axis label gives the desired error control level ℓ.

Summary

- CPSS can be used with any variable selection procedure.
- We can bound the average number of low selection probability variables chosen by CPSS with no conditions on the model or original selection procedure needed.
- Under mild conditions e.g. unimodality or r-concavity, the bounds can be strengthened, yielding tight error control.
- This allows the user to choose the threshold τ in an effective way.
- R packages: mboost and stabsel.

Thank you for listening.

