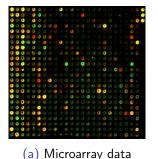
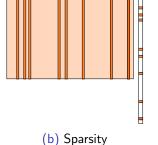
Variable selection with error control: Another look at Stability Selection

Richard J. Samworth and Rajen D. Shah University of Cambridge

RSS Journal Webinar 25 October 2017 Many modern applications, e.g. in genomics, can have the number of predictors p greatly exceeding the number of observations n.

In these settings, variable selection is particularly important.





- Stability Selection (Meinshausen & Bühlmann, 2010) is a very general technique designed to improve the performance of a variable selection algorithm.
- It is based on aggregating the results of applying a selection procedure to subsamples of the data.
- A key feature of Stability Selection is the error control provided in the form an upper bound on the expected number of falsely selected variables.

Let Z_1, \ldots, Z_n be i.i.d. random vectors.

We think of indices S of some components of Z_i as being 'signal variables', and the rest N as 'noise variables'.

E.g. $Z_i = (X_i, Y_i)$, with covariate vector $X_i \in \mathbb{R}^p$, response $Y_i \in \mathbb{R}$ and log-likelihood of the form

$$\sum_{i=1}^n L(Y_i, X_i^T \beta)$$

with $\beta \in \mathbb{R}^p$. Then $S = \{k : \beta_k \neq 0\}$ and $N = \{k : \beta_k = 0\}$. Thus $S \subseteq \{1, \ldots, p\}$ and $N = \{1, \ldots, p\} \setminus S$.

A variable selection procedure is a statistic $\hat{S}_n := \hat{S}_n(Z_1, \ldots, Z_n)$ taking values in the set of all subsets of $\{1, \ldots, p\}$.

For a subset
$$A = \{i_1, \dots, i_{|A|}\} \subseteq \{1, \dots, n\}$$
, write $\hat{S} := \hat{S}_{|A|}(Z_{i_1}, \dots, Z_{i_{|A|}}).$

Meinshausen and Bühlmann defined

$$\widehat{\Pi}(k) := \binom{n}{\lfloor n/2 \rfloor}^{-1} \sum_{\substack{A \subseteq \{1,\dots,n\}, \\ |A| = \lfloor n/2 \rfloor}} \mathbb{1}_{\{k \in \widehat{S}(A)\}}.$$

Stability selection fixes $\tau \in [0, 1]$ and selects $\hat{S}_{n,\tau}^{SS} = \{k : \hat{\Pi}(k) \ge \tau\}.$

Assume that $\{\mathbb{1}_{\{k\in \hat{S}_{\lfloor n/2 \rfloor}\}}: k \in N\}$ is exchangeable, and that $\hat{S}_{\lfloor n/2 \rfloor}$ is no worse than random guessing:

$$\frac{\mathbb{E}(|\hat{S}_{\lfloor n/2 \rfloor} \cap S|)}{\mathbb{E}(|\hat{S}_{\lfloor n/2 \rfloor} \cap N|)} \leq \frac{|S|}{|N|}.$$

Then, for $\tau \in (\frac{1}{2}, 1]$,

$$\mathbb{E}(|\hat{S}_{n,\tau}^{\mathsf{SS}} \cap \textit{\textsf{N}}|) \leq \frac{1}{2\tau-1} \frac{(\mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor}|)^2}{p}$$

In principle, this theorem allows to user to choose τ based on the expected number of false positives they are willing to tolerate. However:

- The theorem requires two conditions, and the exchangeability assumption is very strong
- There are too many subsets to evaluate $\hat{S}_{n,\tau}^{SS}$ exactly when $n \geq 30$
- The bound tends to be rather weak.

Complementary Pairs Stability Selection (CPSS)

Let $\{(A_{2j-1}, A_{2j}) : j = 1, ..., B\}$ be randomly chosen independent pairs of subsets of $\{1, ..., n\}$ of size $\lfloor n/2 \rfloor$ such that $A_{2j-1} \cap A_{2j} = \emptyset$.

Define

$$\hat{\Pi}_B(k) := \frac{1}{2B} \sum_{j=1}^B \mathbb{1}_{\{k \in \hat{S}(A_j)\}}$$

and select $\hat{S}_{n,\tau}^{\mathsf{CPSS}} := \{k : \hat{\Pi}_B(k) \ge \tau\}.$



Worst case error control bounds

Define the selection probability of variable k to be $p_{k,n} = \mathbb{P}(k \in \hat{S}_n)$.

We can divide our variables into those that have low and high selection probabilities: for $\theta \in [0, 1]$, let

$$L_{\theta} := \{k : p_{k, \lfloor n/2 \rfloor} \le \theta\} \quad \text{and} \quad H_{\theta} := \{k : p_{k, \lfloor n/2 \rfloor} > \theta\}.$$

If $au \in (rac{1}{2},1]$, then

$$\mathbb{E}|\hat{S}_{n,\tau}^{\mathsf{CPSS}} \cap L_{\theta}| \leq \frac{\theta}{2\tau - 1} \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}|.$$

Moreover, if $\tau \in [0, \frac{1}{2})$, then

$$\mathbb{E}|\hat{N}_{n,\tau}^{\mathsf{CPSS}} \cap H_{\theta}| \leq \frac{1-\theta}{1-2\tau} \mathbb{E}|\hat{N}_{\lfloor n/2 \rfloor} \cap H_{\theta}|.$$

Suppose p = 1000 and $q := \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor}| = 50$. On average, CPSS with $\tau = 0.6$ selects no more than a quarter of the variables that have below average selection probability under $\hat{S}_{\lfloor n/2 \rfloor}$.

- The theorem requires no exchangeability or random guessing conditions
- It holds even when B = 1
- If exchangeability and random guessing conditions do hold, then we recover

$$\mathbb{E}|\hat{S}_{n,\tau}^{\mathsf{CPSS}} \cap \mathsf{N}| \leq \frac{1}{2\tau - 1} \Big(\frac{q}{p}\Big) \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{q/p}| \leq \frac{1}{2\tau - 1} \Big(\frac{q^2}{p}\Big).$$

Proof

Let

$$ilde{\mathsf{\Pi}}_B(k) := rac{1}{B} \sum_{j=1}^B \mathbb{1}_{\{k \in \hat{S}(\mathcal{A}_{2j-1})\}} \mathbb{1}_{\{k \in \hat{S}(\mathcal{A}_{2j})\}}$$

Note that $\mathbb{E}\{\widetilde{\Pi}_B(k)\} = p_{k,\lfloor n/2 \rfloor}^2$. Now

$$egin{aligned} 0 &\leq rac{1}{B} \sum_{j=1}^B (1 - \mathbbm{1}_{\{k \in \hat{S}(A_{2j-1})\}}) (1 - \mathbbm{1}_{\{k \in \hat{S}(A_{2j})\}}) \ &= 1 - 2 \hat{\Pi}_B(k) + ilde{\Pi}_B(k). \end{aligned}$$

Thus

$$\mathbb{P}\{\hat{\Pi}_B(k) \ge au\} \le \mathbb{P}\{rac{1}{2}(1+ ilde{\Pi}_B(k)) \ge au\} = \mathbb{P}\{ ilde{\Pi}_B(k) \ge 2 au - 1\}$$

 $\le rac{1}{2 au - 1}p_{k,\lfloor n/2
floor}^2.$

æ

Image: A mathematical states and a mathem

Proof 2

It follows that

$$\begin{split} \mathbb{E}|\hat{S}_{n,\tau}^{\mathsf{CPSS}} \cap L_{\theta}| &= \mathbb{E}\bigg(\sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} \mathbb{1}_{\{k \in \hat{S}_{n,\tau}^{\mathsf{CPSS}}\}}\bigg) = \sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} \mathbb{P}(k \in \hat{S}_{n,\tau}^{\mathsf{CPSS}})) \\ &\leq \frac{1}{2\tau - 1} \sum_{k:p_{k,\lfloor n/2 \rfloor} \leq \theta} p_{k,\lfloor n/2 \rfloor}^2 \leq \frac{\theta}{2\tau - 1} \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}|, \end{split}$$

where the final inequality follows because

$$\mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}| = \mathbb{E}\left(\sum_{k: p_{k, \lfloor n/2 \rfloor} \leq \theta} \mathbb{1}_{\{k \in \hat{S}_{\lfloor n/2 \rfloor}\}}\right) = \sum_{k: p_{k, \lfloor n/2 \rfloor} \leq \theta} p_{k, \lfloor n/2 \rfloor}.$$

Image: Image:

3

If Z_1, \ldots, Z_n are not identically distributed, the same bound holds, provided in L_{θ} we redefine

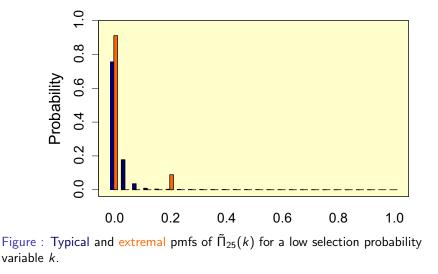
$$p_{k,\lfloor n/2\rfloor} := {\binom{n}{\lfloor n/2\rfloor}}^{-1} \sum_{|A|=n/2} \mathbb{P}\{k \in \hat{S}_{\lfloor n/2\rfloor}(A)\}.$$

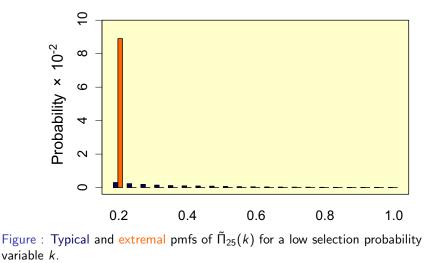
Similarly, if Z_1,\ldots,Z_n are not independent, the same bound holds, with $p_{k,\lfloor n/2\rfloor}^2$ as the average of

$$\mathbb{P}\{k \in \hat{S}_{\lfloor n/2 \rfloor}(A_1) \cap \hat{S}_{\lfloor n/2 \rfloor}(A_2)\}$$

over all complementary pairs A_1, A_2 .

Can we improve on Markov's inequality?





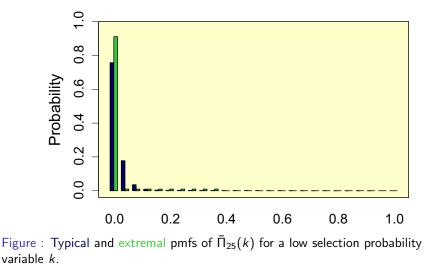
Suppose that the distribution of $\tilde{\Pi}_B(k)$ is unimodal for each $k \in L_{\theta}$. If $\tau \in \{\frac{1}{2} + \frac{1}{B}, \frac{1}{2} + \frac{3}{2B}, \frac{1}{2} + \frac{2}{B}, \dots, 1\}$, then

$$\mathbb{E}|\hat{S}_{n,\tau}^{\mathsf{CPSS}} \cap L_{\theta}| \leq C(\tau, B)\theta \mathbb{E}|\hat{S}_{\lfloor n/2 \rfloor} \cap L_{\theta}|,$$

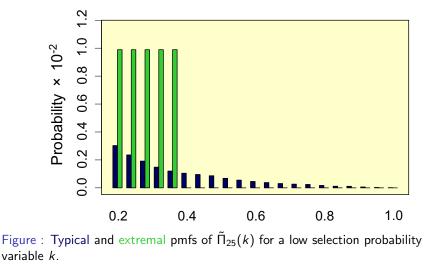
where, when $heta \leq 1/\sqrt{3}$,

$$C(\tau,B) = \begin{cases} \frac{1}{2(2\tau - 1 - 1/2B)} & \text{if } \tau \in (\min(\frac{1}{2} + \theta^2, \frac{1}{2} + \frac{1}{2B} + \frac{3}{4}\theta^2), \frac{3}{4}] \\ \frac{4(1 - \tau + 1/2B)}{1 + 1/B} & \text{if } \tau \in (\frac{3}{4}, 1]. \end{cases}$$

Extremal distribution under unimodality



Extremal distribution under unimodality



r-concavity provides a continuum of constraints that interpolate between unimodality and log-concavity.

A non-negative function f on an interval $I \subset \mathbb{R}$ is r-concave with r < 0 if f^r is convex on I.

A pmf f on $\{0, 1/B, ..., 1\}$ is r-concave if the linear interpolant to $\{(i, f(i/B)) : i = 0, 1, ..., B\}$ is r-concave. The constraint becomes weaker as r increases to 0.

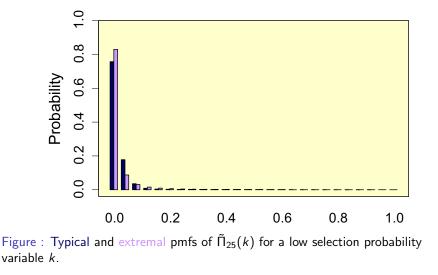
Suppose $\tilde{\Pi}_B(k)$ is *r*-concave for all $k \in L_{\theta}$. Then for $\tau = (\frac{1}{2}, 1]$,

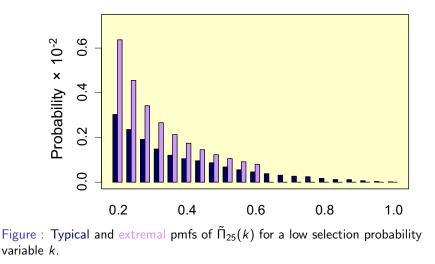
$$\mathbb{E}|\hat{S}_{n, au}^{\mathsf{CPSS}} \cap L_{ heta}| \leq D(heta^2, 2 au-1, B, r)|L_{ heta}|$$

where D can be evaluated numerically.

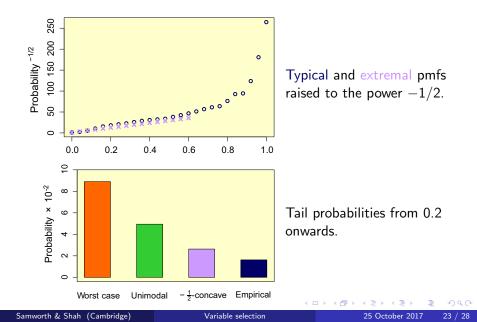
Our simulations suggest r = -1/2 is a reasonable choice.

Extremal distribution under -1/2-concavity





r = -1/2 is sensible



Suppose $\hat{\Pi}_B(k)$ is -1/4-concave, and that $\tilde{\Pi}_B(k)$ is -1/2-concave for all $k \in L_{\theta}$. Then

 $\mathbb{E}|\hat{S}_{n,\tau}^{\mathsf{CPSS}} \cap L_{\theta}| \leq \min\{D(\theta^2, 2\tau - 1, B, -1/2), D(\theta, \tau, 2B, -1/2)\} |L_{\theta}|,$ for all $\tau \in (\theta, 1]$. (We take $D(\cdot, t, \cdot, \cdot) = 1$ for $t \leq 0$.)

Improved bounds

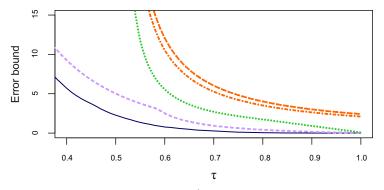


Figure : Comparison of the bounds on $\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{q/p}|$ where p = 1000, q = 50 showing the M & B (dashes), worst case (dot dash), unimodal and *r*-concave bounds, and the true value for a simulated example.

Simulation study

- Linear model $Y_i = X_i^T \beta + \varepsilon_i$ with $X_i \in N_p(0, \Sigma)$.
- Toeplitz covariance $\Sigma_{ij} = \rho^{||i-j|-p/2|-p/2}$.
- β has sparsity s with s/2 equally spaced within [-1, -0.5] and s/2 equally spaced within [0.5, 1].
- *n* = 200, *p* = 1000.
- Use Lasso and seek $\mathbb{E}|\hat{S}_{n,\tau}^{\text{CPSS}} \cap L_{q/p}| \leq \ell$. Fix $q = \sqrt{0.8\ell p}$ and for worst-case bound choose $\tau = 0.9$.
- Choose $\tilde{\tau}$ from *r*-concave bound, oracle τ^* , and oracle λ^* for Lasso $\hat{S}_n^{\lambda^*}$.

Compare

$$\frac{\mathbb{E}[\hat{S}_{n,0.9}^{\mathsf{CPSS}} \cap S]}{\mathbb{E}[\hat{S}_{n,\tau^*}^{\mathsf{CPSS}} \cap S]}, \frac{\mathbb{E}[\hat{S}_{n,\tilde{\tau}}^{\mathsf{CPSS}} \cap S]}{\mathbb{E}[\hat{S}_{n,\tau^*}^{\mathsf{CPSS}} \cap S]} \text{ and } \frac{\mathbb{E}[\hat{S}_n^{\lambda^*} \cap S]}{\mathbb{E}[\hat{S}_{n,\tau^*}^{\mathsf{CPSS}} \cap S]}.$$

Simulation results

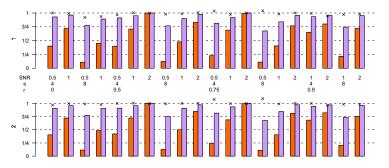


Figure : Expected number or true positives using worst case and *r*-concave bounds, and an oracle Lasso procedure (crosses), as a fraction of the expected number of true positives for an oracle CPSS procedure. The *y*-axis label gives the desired error control level ℓ .

- CPSS can be used with any variable selection procedure.
- We can bound the average number of low selection probability variables chosen by CPSS with no conditions on the model or original selection procedure needed.
- Under mild conditions e.g. unimodality or *r*-concavity, the bounds can be strengthened, yielding tight error control.
- This allows the user to choose the threshold au in an effective way.
- R packages: mboost and stabsel.

Thank you for listening.