A Bayesian Phase I/II Design for Oncology Clinical Trials of Combining Biological Agents

Ying Yuan

Department of Biostatistics, MD Anderson Cancer Center

March 12, 2014

1/38

Outline

- Introduction
- Probability model
- Dose finding algorithm

イロン イロン イヨン イヨン 三日

2/38

- Simulation study
- Conclusion

Introduction

Methods Trial design Simulation Conclusions

Biological agents A lymphoma trial

Biological agents

- The paradigm of oncology drug development is expanding from traditional cytotoxic agents to novel biological (or molecularly targeted) agents.
- Examples of biological agents:
 - Biospecimens targeting a specific tumor pathway.
 - Gene products aiming for DNA repair.
 - Immunotherapies stimulating the immune system to attack a tumor.

Biological agents A lymphoma trial

Biological agents versus cytotoxic agents

- Cytotoxic agents
 - Toxicity and efficacy are assumed to monotonically increase with dose.
 - The goal is to find the maximum tolerated dose (MTD).
- Biological agents
 - The toxicity is usually tolerable within the therapeutic dose range and may plateau at higher dose levels.
 - The dose-efficacy curves often follow a non-monotonic pattern.
 - The goal is to find the optimal biological dose (OBD), defined as the dose yielding the most desirable treatment effect.

Biological agents A lymphoma trial

Drug-combination Trials

- Treating patients with a combination of agents is becoming common in cancer clinical trials.
- Most existing drug-combination trial designs concern cytotoxic agents (e.g., Thall et al., 2003; Wang and Ivanova, 2005; Yin and Yuan, 2009), thus are not applicable to the trials combining biological agents.
- A phase I/II trial design is imperative for biological agent combination trials because of non-monotonic dose-efficacy and -toxicity relationship.

Biological agents A lymphoma trial

Motivating trial

- A lymphoma trial combining two novel biological agents to target two components in the PI3K/AKT/mTOR signaling pathway.
 - Agent A is a PI3K kinase inhibitor.
 - Agent B inhibits mTOR kinase downstream in the pathway.
- 4 doses of agent A combined with 4 doses of agent B.
- Goal: to find the biologically optimal dose combination (BODC), defined as the dose combination with the highest efficacy and tolerable toxicity.

Introduction

Methods Trial design Simulation Conclusions

Biological agents A lymphoma trial

Motivating trial

РІЗК Agent A Akt Rheb mTOR Agent B 4E-BP1 S6K1 Cell growth, proliferation, survival, immune regulation, angiogenesis

Targeting PI3K/AKT/mTOR signaling Pathways in Lymphoma

7 / 38

Biological agents A lymphoma trial

Proposed design

We propose a phase I/II trial design to identify the BODC.

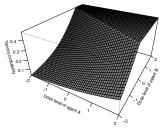
- A change-line model is used to reflect the property that the dose-toxicity surface of the combinational agents may plateau at higher dose levels.
- A logistic model with quadratic terms is used to accommodate the possible non-monotonic pattern for the dose-efficacy relationship.
- We devise a novel adaptive dose-finding algorithm to encourage sufficient exploration of the two-dimensional dose space.

Model for toxicity and efficacy Likelihood and prior specifications

Notation

- Consider a trial of combinational biological agents
 - J doses of agent A: $a_1 < a_2 < \cdots < a_J$
 - K doses of agent B: $b_1 < b_2 < \cdots < b_K$
 - (a_j, b_k) : combination of dose a_j and dose b_k
 - *p_{jk}* and *q_{jk}* denote the toxicity and efficacy probabilities of dose combination (*a_j*, *b_k*)
- Goal: identify the BODC in the $J \times K$ dose matrix.

Model for toxicity and efficacy Likelihood and prior specifications


Change-line model for toxicity

We model toxicity probability p_{jk} using a change-line model:

$$logit(p_{jk}) = (\beta_0 + \beta_1 a_j + \beta_2 b_k) I(\beta_0 + \beta_1 a_j + \beta_2 b_k \le \omega) + \omega I(\beta_0 + \beta_1 a_j + \beta_2 b_k > \omega)$$

- I(·): indicator function
- β₁ > 0 and β₂ > 0 such that p_{jk} initially increases with the doses of A and B
- When it reaches a plateau, the toxicity probability: e^ω/(1 + e^ω).
- We did not include an interactive effect for the two agents because the estimation of that needs large sample

Figure : Surface of the toxicity probabilities

Model for toxicity and efficacy Likelihood and prior specifications

Logistic model for efficacy

Assume the efficacy probability q_{jk} follows a logistic model

$$logit(q_{jk}) = \gamma_0 + \gamma_1 a_j + \gamma_2 b_k + \gamma_3 a_j^2 + \gamma_4 b_k^2$$

- The quadratic terms render the model adequate flexibility to capture the non-monotonic pattern.
- We model the marginal distributions of toxicity and efficacy.
- Joint modeling is possible, but small sample size \rightarrow cannot reliably estimate the correlation parameter.

Model for toxicity and efficacy Likelihood and prior specifications

Likelihood

Suppose that at a certain stage of the trial

- n_{jk} patients are treated at the paired dose (a_j, b_k)
- x_{jk} and y_{jk} patients have experienced toxicity and efficacy, respectively.
- The marginal likelihood for the toxicity data x is

$$\mathcal{L}(\mathbf{x}|\omega,oldsymbol{eta}) \propto \prod_{j=1}^J \prod_{k=1}^K p_{jk}^{x_{jk}} (1-p_{jk})^{n_{jk}-x_{jk}};$$

for the efficacy data ${\boldsymbol{y}}$ is

$$\mathcal{L}(\mathbf{y}|\boldsymbol{\gamma}) \propto \prod_{j=1}^J \prod_{k=1}^K q_{jk}^{y_{jk}} (1-q_{jk})^{n_{jk}-y_{jk}}.$$

12 / 38

Model for toxicity and efficacy Likelihood and prior specifications

• The posterior distribution is

$$f(\omega,oldsymbol{eta},oldsymbol{\gamma}|\mathbf{x},\,\mathbf{y}) \propto L(\mathbf{x}|\omega,oldsymbol{eta})L(\mathbf{y}|oldsymbol{\gamma})f(\omega)f(oldsymbol{eta})f(oldsymbol{\gamma})$$

where $f(\omega)$, $f(\beta)$, and $f(\gamma)$ denote the prior distributions for ω , β , and γ , respectively.

• Vague priors are used:

 $\gamma_0 \sim \text{Cauchy}(0,10), \quad \gamma_1, \cdots, \gamma_4 \sim \text{Cauchy}(0, 2.5). \quad \beta_0 \sim \text{Cauchy}(0, 10), \quad \beta_1, \beta_2 \sim \text{Gamma}(0.5, 0.5) \quad \omega \sim N(0, 4)$

Overview Stage I: Run-in period Stage II: Systematic dose finding

Trial design

Our design is conducted in two stages:

- Stage I (run in): We escalate doses along the diagonal to explore the dose-combination space quickly and collect some preliminary data.
- Stage II (dose finding): Based on observed efficacy and toxicity data, we continuously update the posterior estimates of toxicity and posterior means of efficacy and assign patients to the most appropriate dose.

Def: dose (a_j, b_k) is deemed safe if $Pr(p_{jk} < \phi | D) > \delta$; otherwise toxic.

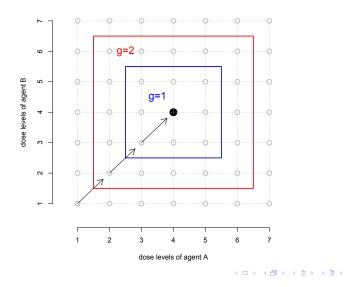
• ϕ is the target toxicity upper limit and δ is a prespecified safety cutoff.

Overview Stage I: Run-in period Stage II: Systematic dose finding

Stage I: Run-in period

The trial starts with the treatment of the first cohort of patients at the lowest dose (a_1, b_1) .

- 11 If current dose is safe, escalate the dose along the diagonal. If (a_1, b_1) is deemed toxic, terminate the trial.
- 12 Stage I completes when either current dose is deemed toxic or the highest dose combination is reached. Stage II starts.


Overview Stage I: Run-in period Stage II: Systematic dose finding

g-degree admissible dose set

Assume that the current dose combination is (a_j, b_k) ,

- Define g-degree neighbors of (a_j, b_k), denoted by N_g, as dose combinations {(a_{j'}, b_{k'})} whose dose levels are different from (a_j, b_k) no more than g levels, i.e., N_g = {(a_{j'}, b_{k'}) : |j' j| ≤ g and |k' k| ≤ g}.
- Further define a g-degree admissible dose set A_g, which is a subset of the g-degree neighbors N_g satisfying the pre-specified safety requirement Pr(p_{i'k'} < φ_T|D) > δ.

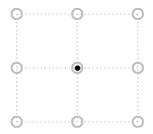
Overview Stage I: Run-in period Stage II: Systematic dose finding

17/38

2

Overview Stage I: Run-in period Stage II: Systematic dose finding

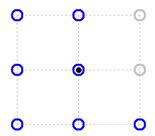
Stage II: Systematic dose finding


- II1 Based on the observed data, identify \mathcal{A}_{g^*} as the nonempty set of safe neighbors of (a_j, b_k) with minimum degree g^* . If \mathcal{A}_{g^*} does not exist (i.e., all experimental doses are deemed toxic), terminate the trial.
- II2 Among the doses in A_{g^*} , identify the dose (a_{j^*}, b_{k^*}) with the highest posterior mean of efficacy $\hat{q}_{j^*k^*}$.

Overview Stage I: Run-in period Stage II: Systematic dose finding

First-degree neighbors of current dose combination, \mathcal{N}_1

Current dose


First-degree neighbors

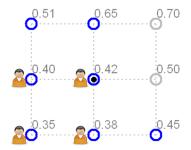
Overview Stage I: Run-in period Stage II: Systematic dose finding


First-degree admissible dose set of current dose combination, \mathcal{A}_1

- Current dose
- Admissible dose
- Non-admissible dose

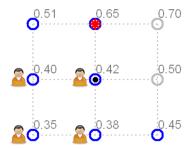
Overview Stage I: Run-in period Stage II: Systematic dose finding

The dose (a_{j^*}, b_{k^*}) with the highest posterior mean of efficacy $\hat{q}_{j^*k^*}$


Overview Stage I: Run-in period Stage II: Systematic dose finding

- The commonly used algorithm is to assign the next cohort of patients to (a_{j^*}, b_{k^*}) .
- Problem: this greedy algorithm is easily trapped in locally optimal doses due to
 - small sample size
 - model misspecification
- Solution: a novel dose-finding algorithm to adaptively encourage the exploration of untried doses

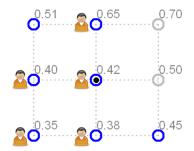
Overview Stage I: Run-in period Stage II: Systematic dose finding


- Admissible dose
- Non-admissible dose

Overview Stage I: Run-in period Stage II: Systematic dose finding

Current dose

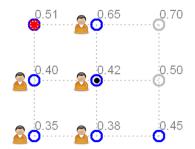
- Admissible dose
- Non-admissible dose



<ロ><回><一><一><一><一><一><一><一</td>24/38

Overview Stage I: Run-in period Stage II: Systematic dose finding

Current dose


- Admissible dose
- Non-admissible dose

Overview Stage I: Run-in period Stage II: Systematic dose finding

Current dose

- Admissible dose
- Non-admissible dose

Overview Stage I: Run-in period Stage II: Systematic dose finding

Stage II: Systematic dose finding

- II3 If $n_{j^*k^*} = 0$ or $n_{rs} \neq 0$ for all $(a_r, b_s) \in \mathcal{A}_{g^*}$, treat the next cohort at dose (a_{j^*}, b_{k^*}) .
 - $\begin{array}{l} \textbf{O} \quad \text{Otherwise,} \\ \left\{ \begin{array}{l} \text{If } \hat{q}_{j^{*}k^{*}} > \left(\frac{N-n}{N}\right)^{\alpha} & \text{treat the next cohort at } \left(a_{j^{*}}, b_{k^{*}}\right), \\ \text{If } \hat{q}_{j^{*}k^{*}} \leq \left(\frac{N-n}{N}\right)^{\alpha} & \text{remove dose } \left(a_{j^{*}}, b_{k^{*}}\right) \text{ from } \mathcal{A}_{g^{*}} \\ & \text{and go to step II2.} \end{array} \right. \end{array} \right.$
 - N: prespecified maximum sample size
 - n = ∑_{j,k} n_{jk}: the total number of patients treated in the trial
 α is a known tuning parameter.
- II4 Repeat steps II2-4 until exhaustion of the sample size. Select as the BODC the dose combination with the highest \hat{q}_{jk} among all safe doses.

Setup Results

Simulation setup

- Consider 4 dose levels for each agent:
 - Dose levels of A and B are (0.075, 0.15, 0.225, 0.3) and (0.08, 0.16, 0.24, 0.32), respectively.
- The maximum sample size was 15 cohorts of size 3.
- Set the target toxicity upper limit $\phi = 0.3$ and the safety cutoff $\delta = 0.4$.
- Set the tuning parameter $\alpha = 2$.

Setup Results

Simulation setup

- We compared the proposed design with a greedy design that is otherwise identical except that it uses the greedy dose-assignment rule (i.e., always assign the next cohort to the dose with the highest estimate of efficacy).
- 2000 simulated trials under each scenario.

Setup Results

Simulation results

Table : Scenario 1

		Agent A										
Agent	Tox	icity p	robab	ility	Efficacy probability							
В	1	2	3	4		1	2	3	4			
4	.25	.25	.25	.25		.42	.60	.38	.32			
3	.15	.25	.25	.25		.19	.44	.20	.18			
2	.10	.25	.25	.25		.12	.29	.15	.10			
1	.05	.10	.15	.25		.05	.22	.10	.08			

Setup Results

Simulation results

Table : The selection percentage and the percentage of patients treated at each dose combination (shown as the subscripts) for scenario 1.

	-						-						
	Agent A												
		Proposed	design	Greedy design									
В	1	2	3	4	-	1	2	3	4				
4	23.814.1	31.0 _{15.9}	$10.8_{9.4}$	8.9 _{8.5}		$18.2_{9.5}$	$21.5_{10.0}$	7.8 _{5.3}	21.826.5				
3	3.5 _{3.9}	$5.5_{6.0}$	$1.2_{6.9}$	$1.1_{4.6}$		4.5 _{3.0}	4.3 _{3.0}	$1.1_{9.5}$	2.23.2				
2	0.92.3	2.7 _{8.1}	0.83.7	0.52.3		$1.2_{1.6}$	$4.2_{11.4}$	$0.9_{1.6}$	0.61.9				
1	0.77.6	$2.1_{2.8}$	$1.0_{2.1}$	$0.9_{1.8}$		$0.5_{8.4}$	2.2 _{1.9}	$1.4_{2.1}$	$2.1_{1.2}$				

Setup Results

Simulation results

Table : Scenario 2

	Agent A										
Agent	Toxicity probability					Efficacy probability					
В	1	2	3	4		1	2	3	4		
4	.25	.25	.25	.25		.10	.29	.29	.42		
3	.15	.25	.25	.25		.25	.35	.43	.60		
2	.10	.25	.25	.25		.12	.24	.32	.39		
1	.05	.10	.15	.25		.05	.14	.28	.32		

Setup Results

Simulation results

Table : The selection percentage and the percentage of patients treated at each dose combination (shown as the subscripts) for scenario 2.

	Agent A										
Agent		Propos	ed desigi	ı		Greedy design					
В	1	2	3	4	1	2	3	4			
4	$1.6_{2.1}$	3.2 _{3.2}	$4.1_{6.4}$	17.0 _{13.7}	$2.5_{1.6}$	$3.1_{2.3}$	3.9 _{3.7}	$30.1_{32.0}$			
3	$2.5_{2.1}$	2.84.3	$7.1_{9.2}$	$33.1_{18.5}$	2.42.3	$3.1_{2.3}$	9.0 _{13.9}	17.9 _{9.3}			
2	$0.7_{1.6}$	$1.5_{7.8}$	3.4 _{5.3}	9.6 _{8.5}	0.80.9	$1.1_{9.0}$	3.0 _{2.6}	8.2 _{5.1}			
1	0.37.3	$0.8_{1.6}$	$2.5_{2.7}$	$6.0_{5.7}$	$0.1_{7.7}$	0.60.9	$2.2_{2.3}$	$7.1_{3.9}$			

Setup Results

Simulation results

Table : Scenario 3

	Agent A										
Agent	Toxicity probability					Effi	cacy p	robab	ility		
В	1	2	3	4	_	1	2	3	4		
4	.17	.25	.45	.55		.60	.35	.32	.28		
3	.12	.16	.25	.43		.42	.30	.28	.25		
2	.08	.10	.19	.22		.35	.28	.22	.20		
1	.05	.08	.12	.18		.25	.23	.19	.16		

Setup Results

Simulation results

Table : The selection percentage and the percentage of patients treated at each dose combination (shown as the subscripts) for scenario 3.

	Agent A											
		Proposed	design			Greedy design						
В	1	2	3	4	1	2	3	4				
4	46.3 _{18.9}	6.8 _{5.5}	3.4 _{5.2}	$1.3_{6.1}$	39.1 _{13.8}	$7.1_{5.2}$	3.3 _{3.6}	0.99.8				
3	$7.8_{5.5}$	$2.7_{5.0}$	$3.1_{8.6}$	2.24.5	7.3 _{3.9}	2.62.9	$3.5_{13.2}$	2.9 _{3.9}				
2	$5.3_{5.0}$	$1.9_{8.2}$	$1.5_{4.5}$	$3.1_{3.4}$	3.9 _{2.7}	$3.0_{12.0}$	$1.8_{2.5}$	3.9 _{3.6}				
1	$5.5_{10.2}$	$2.3_{3.6}$	$1.7_{2.7}$	2.9 _{3.0}	8.616.1	$2.5_{2.0}$	$2.5_{1.8}$	4.9 _{2.9}				

Conclusions

- Our proposed design explicitly accounts for the unique features of the biological agents, i.e., dose-efficacy and -toxicity relationships may take non-monotonic patterns.
- The proposed design adaptively encourages dose exploration in the two-dimensional dose space.
- Our design identifies the BODC with substantially higher selection percentage and allocates more patients to the target dose combination than the greedy design.
- In the case that efficacy plateaus, a similar change-line model can be used.

Reference

 Cai, C., Yuan, Y. and Ji, Y. (2014) A Bayesian Phase I/II Design for Oncology Clinical Trials of Combining Biological Agents. *Journal of the Royal Statistical Society: Series C*, 63, 159-173.

Thank you !