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Equal/Adaptive Randomization

In a clinical trial with multiple treatments, the goal is to
identify the superior treatment quickly, as well as treating
patients effectively.
Equal randomization (ER) is a simple and efficient way for
patient allocation.
Response-based adaptive randomization (AR) tends to assign
more patients to better treatments based on the information
accumulated in the trial.
Prior to the implementation of AR, a prerun of ER is typically
used to stabilize the parameter estimates.
However, it is not clear how large the prerun sample size should
be, and it is often chosen arbitrarily in practice.
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Adaptive Randomization

Pioneering work can be traced back to Thompson (1933),
Robbins (1952), and Feldman (1962) etc.

Play-the-winner rule (Zelen, 1969): Continue using the same
treatment if a success response is observed; otherwise switch to
the other treatment.

Randomized play-the-winner rule (Wei and Durham, 1978): A
higher randomization probability is given to the treatment that
has produced a success response.

Bandit problems and Bayesian adaptive randomization (Berry
and Eick, 1995).
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Play-the-Winner Rule
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Figure 1: Play-the-winner rule and urn model with treatments A and B.
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Optimal Allocation in AR (Binary Data)

We can calculate the optimal allocation ratio by minimizing the
variance (equivalently, maximizing power), or by minimizing the
expected number of nonresponders in a trial.
Let p1 and p2 denote the response rates of treatments 1 and 2.
By minimizing the variance of the difference between p̂1 and p̂2,
the allocation ratio between arm 1 and arm 2 is√

p1(1− p1)√
p2(1− p2)

,

which is known as Neyman’s allocation.
By minimizing the number of nonresponders while fixing the
variance (Rosenberger et al., 2001), the allocation ratio is

√
p1√
p2
.
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Continuous Data

For continuous data, let µ1 and µ2 denote the means of two
normal distributions, and let σ2

1 and σ2
2 denote the

corresponding variances.
Neyman’s allocation ratio is

σ1

σ2
,

which minimizes the variance.
For the case where a smaller response is preferred, Zhang and
Rosenberger (2005) proposed an optimal allocation ratio of

σ1
√
µ2

σ2
√
µ1
,

by minimizing the total expected response from all patients.
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Bayesian Adaptive Randomization

In the Bayesian approach, we may naturally assign patients to
treatment 1 with a probability of

λ = Pr(p1 > p2|y1, y2),

where y1 and y2 represent the accumulated data in the two
arms (Yin, 2012).

By comparing the posterior distributions of p1 and p2, it
automatically accounts for both the point and variance
estimates of the treatment response rates.
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Bayesian Estimates (Early vs. Late Stages)
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Figure 2: Posterior distributions of the response rates at the earlier and later
stages of a trial. 8 / 29



Power Transformation

We can explore a class of randomization probabilities,

π(λ, γ) =
λγ

λγ + (1− λ)γ
.

If γ = 0, the randomization scheme reduces to ER with an
equal assigning probability of 0.5 regardless of the value of λ;
and if γ = 1, π(λ, γ) = λ.
It may depend on the accumulating sample size n,

γn =
n

2N
,

where N is the total sample size.
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Delayed Response with τ = 6a
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Figure 3: By the time a new cohort is ready for treatment, some of the patients
in the trial may be partially followed and their efficacy outcomes have not yet
been observed.

10 / 29



Parametric Survival Model

Zhang and Rosenberger (2007) developed an optimal allocation
scheme under the assumption of parametric survival models.
Let T denote the survival time; under an exponential model the
survival function of T is given by

Sj(t) = exp(−λj t) = exp
(
− t
θj

)
, j = 1, 2,

where λj is the constant hazard rate for treatment arm j , and
θj = 1/λj is the mean survival time.
Let ∆1i and ∆2i be the censoring indicators in group 1 and
group 2, respectively. Denote δ1 = E (∆1i ) and δ2 = E (∆2i ).
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Time-to-Event Endpoint

Consider the hypothesis test

H0: θ1 = θ2 versus H1: θ1 6= θ2.

The variance of θ̂1 − θ̂2 is

Var(θ̂1 − θ̂2) =
θ2
1

n1δ1
+

θ2
2

n2δ2
.

Zhang and Rosenberger (2007) obtained the optimal allocation
ratio by minimizing the total expected hazard n1θ

−1
1 + n2θ

−1
2 ,

subject to fixing the variance as a constant,

rθ =

√
θ3
1δ2√
θ3
2δ1

.
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Allocation Ratio with Survival Function

If the patient response is a good event, then the sooner
patients experience the event, the better.
We minimize the total number of patients who have not
responded within the assessment window (0, τ).
We derive the optimal allocation ratio by minimizing

n1S1(τ, λ1) + n2S2(τ, λ2)

subject to fixing Var{S1(τ, λ̂1)− S2(τ, λ̂2)} = K .
The optimal allocation ratio is

rS =
λ1
√
δ2 exp(−λ1τ)

λ2
√
δ1 exp(−λ2τ)

.

When the sample size is large and both p1 and p2 are small, rS
reduces to that of the binary case, i.e., rS ≈

√
p1/
√

p2.
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Two-stage Response-Adaptive Randomization

We consider a two-arm clinical trial with binary endpoints,

Y1i ∼ Bernoulli(p1), i = 1, . . . , n1,

Y2i ∼ Bernoulli(p2), i = 1, . . . , n2.

The null and alternative hypotheses are formulated as

H0 : p1 = p2 versus H1 : p1 6= p2.

The trial starts with ER, and continuously makes decisions on
when to switch to AR as more data are collected.
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Likelihood Ratio Test

With m patients in each arm, the likelihood ratio test statistic is

Tm = −2log


max

H0:p1=p2=p
p
∑m

i=1(y1i+y2i )(1− p)
∑m

i=1(2−y1i−y2i )

max
p1,p2

p
∑m

i=1 y1i
1 (1− p1)

∑m
i=1 (1−y1i )p

∑m
i=1 y2i

2 (1− p2)
∑m

i=1 (1−y2i )

 .

Under the null hypothesis, the likelihood ratio test statistic
follows a chi-squared distribution with one degree of freedom,
i.e., Tm ∼ χ2

(1).

We can compute T̂m by plugging in the MLEs of p1 and p2, and
the “rejection region” is defined as T̂m > χ2

(1)(1− α̃).
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Role of α̃

As a threshold level for switching from ER to AR, α̃ should be
greater than the trial’s type I error rate α.

If the treatment difference is large, nE would be small so that
the trial moves to AR quickly; and if the treatment difference is
small, nE would be large as ER and AR are not much different
so that it would take a longer time before switching to AR.

By controlling α̃, the two-stage design can automatically adapt
to the true difference between p1 and p2.

In contrast, if we fix the sample size nE in the ER stage, it
would not be adjustable to the treatment difference.
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Two-stage Procedure

In stage 1, the trial begins with equal randomization, and
continuously updates the likelihood ratio test statistic after
enrolling every new patient. If T̂m < χ2

(1)(1− α̃), equal
randomization remains; otherwise, the trial proceeds to stage 2.

In stage 2, we start to implement response-adaptive
randomization for each patient based on an optimal allocation
ratio, e.g., using

√
p1/
√

p2 as the allocation ratio to minimize
the number of nonresponders.
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Nonparametric Fractional Model for Delayed Response

The missing or censoring of response poses immense difficulties
when applying response-adaptive randomization during the trial
conduct.
If we view the efficacy endpoint as an event of interest, we can
model the time to efficacy using the Kaplan-Meier estimator,
and fractionize the censored observations based on patients’
exposure times in the trial.
If a drug-related efficacy event occurs, it is expected to occur
within the observation window [0, τ ].

Y =

{
0 if the subject does not respond within [0, τ ],
1 if the subject responded within [0, τ ].
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Fractional Contribution for Censored Data

Let T1i denote the time to efficacy, and let u1i (u1i ≤ τ) denote
the actual follow-up time for subject i in arm 1.
The patient’s response is censored if he/she has not responded
(u1i < T1i ) and also has not been fully followed up to τ
(u1i < τ).
If we observe a censored event before τ , i.e., efficacy has not
occurred yet, we can obtain a fraction of 1 as the contribution
of the censored observation to the response probability.

Censoring Failure

×
0 ui ti τ
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Redistribution to the Right (Kaplan–Meier Estimator)

If subject i is censored by the decision-making time u1i , we take
the fractional contribution as

Pr(T1i < τ |T1i > u1i ) =
Pr(u1i < T1i < τ)

Pr(T1i > u1i )
.

A fractional contribution for a censored observation is

ŷ1i =
Ŝ1(u1i )− Ŝ1(τ)

Ŝ1(u1i )
,

where Ŝ1(·) is the Kaplan–Meier estimator for arm 1.
The estimated response rate is p̂1 =

∑n1
i=1 r1i/n1, where

r1i =


0 if patient i does not respond,
1 if patient i has responded,
ŷ1i if the response of patient i is censored.
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Simulations

Our simulation studies considered a two-arm trial with binary
outcomes for investigating the operating characteristics of the
proposed two-stage fractional AR design.
The assessment period for efficacy was τ = 12 weeks.
The accrual time interval between two consecutive cohorts was
a = 1 week, i.e., every week a new cohort (4 patients) would
enter the trial.
The sample size was calculated based on the type I error and
type II error rates, α = 0.1 and β = 0.2 for a two-sided test.
We fixed the threshold level for ER/AR switching α̃ = 0.3.
For each configuration, we replicated 10,000 trials.
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Weibull Distributions
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Arm 1: T ∼  Weibull (γ=5, λ=0.0729)
Arm 2: T ∼  Weibull (γ=1, λ=0.0186)

Figure 4: Weibull CDFs with the response probability at time τ being 0.4 for arm
1 and 0.2 for arm 2. The response probability of arm 2 is clearly higher than that
of arm 1 before week 10.
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Comparison of Three Methods

Complete-data AR follows each subject till the occurrence of
response or the end of the assessment period prior to
randomizing each new patient.

Fractional AR utilizes the scheme of redistribution to the right
for censored data, so that each patient would be immediately
randomized upon arrival.

Observed-data AR is based on the observed efficacy data only,
while treating censored patients (who have not responded or
have been fully followed yet) as nonresponders.
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Comparison of AR Designs

Table 1: Comparison of the two-stage observed-data, complete-data, and fractional AR
designs with p2 = 0.2 and n = 132.

Two-stage Allocation Allocation Number of Rejection Trial ER
p1 design arm 1 (%) S.D. responders rate (%) duration nE

0.2 Observed 47.4 0.06 26.5 10.1 52.7 56.9
Complete 50.0 0.06 26.4 10.5 362.1 53.9
Fractional 50.3 0.07 26.4 9.8 52.7 45.2

0.4 Observed 53.5 0.06 40.5 81.1 53.4 44.5
Complete 57.8 0.06 41.6 80.5 370.8 27.5
Fractional 57.5 0.07 41.6 80.9 53.4 30.1

0.6 Observed 57.4 0.06 56.7 99.9 53.6 30.8
Complete 62.5 0.06 59.3 99.9 372.7 16.1
Fractional 61.8 0.06 59.0 99.9 53.6 22.1

0.8 Observed 60.7 0.06 74.4 100.0 53.5 22.4
Complete 65.7 0.05 78.4 100.0 370.0 12.5
Fractional 64.8 0.06 77.7 100.0 53.5 17.7
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Simulation Results

For p1 = 0.2, the two treatments have the same response rate,
all three designs maintained the type I error rate at α = 0.1.

Since a much higher response rate in arm 2 was observed at
the beginning of the follow-up, the observed-data AR design
falsely assigned more patients to arm 2.

For p1 = 0.4, it corresponds to the alternative hypothesis, which
thus has the targeting power of 80% under all three designs.

The fractional and the complete-data designs yielded similar
allocation ratios, while both are better than the observed-data
design.
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Simulation Results

As the difference between the two response rates increases, the
sample size of ER becomes smaller because fewer patients are
needed to detect a larger difference.

For p1 = 0.8, fractional AR increased the number of responders
by more than three patients over the observed-data design.

Comparing the duration of the trial between the proposed
fractional design and the complete-data design, the trial time
was dramatically reduced from 370 weeks to 53 weeks.
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Discussion

The two-stage fractional design addresses two practical issues
for response-adaptive randomization:
(a) the number of patients in the ER stage is not clearly defined,
(b) patient response cannot be observed quickly enough for real-time

AR.

In the new design, unobserved efficacy outcomes are naturally
treated as censored data, and their fractional point masses are
calculated to help making decisions on treatment assignment.
The nonparametric fractional design is robust and easy to
implement, as it only uses the Kaplan–Meier estimator.
The likelihood ratio test with α̃ is only used for deciding when
to switch from ER to AR.
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Questions?

29 / 29


	Equal/Adaptive Randomization
	Parametric Survival Model
	Nonparametric Fractional Model for Delayed Response
	Numerical Studies
	Simulations

	Discussion
	Main References

