Statistical clustering of temporal networks through a dynamic stochastic block model

Catherine Matias

CNRS - Sorbonne Université - Université de Paris, Paris, FRANCE catherine.matias@math.cnrs.fr http://cmatias.perso.math.cnrs.fr/

Joint work with Vincent Miele (LBBE, CNRS, Université Lyon 1, France)

Outline

Introduction: contact networks

Clustering dynamic networks

Simulations

Real data set

Static contact networks

Contact network analysis

- Different 'individuals' may be at stake : humans, animals, species, ...
- Contact networks may be built from:
 - sensors-based measurements (humans, animals),
 - declarations in surveys (e.g: friendship relations between humans),
 - field observations of associations between animals (e.g: physical proximity) or species (e.g: trophic relationships),
 - trapping data (animals), ...
- With different aims: studying sociability (humans, animals) or Ecology (animals, species)
- Formal definition
 - N individuals $\equiv N$ nodes (vertices)
 - ▶ presence/absence of contact or frequency of contact = edges (links)

Dynamic contact networks

Made of

1. snapshots of a contact networks at different time steps (hour, day, week, season...)

2. individuals may be present/absent at each time step Formal definition:

- *T* time steps ; N_t individuals $\equiv N_t$ nodes at time step *t*
- ► N individuals in total (N << N₁ + ... + N_t: many individuals stay present across time)
- ► presence/absence or frequency of contacts = edges at each time step

Studying dynamic contact networks I

- Is there a social structure?
 - Understanding if there is a peculiar non-random mixing of individuals that would be a sign for a social organisation.
- What is its dynamics?
- How does it vary with other factors?
 e.g: seasonal changes, breeding season, response to stress, arrival/departure of a peculiar individual,...
- How can we predict how infectious diseases can spread?

Studying dynamic contact networks II

Here we focus on

- Is there a social structure?
- What is its dynamics?
- (How does it vary with other factors?)
- (How can we predict how infectious diseases can spread?)

Our answer:

- moving beyond descriptive statistics and proposing a statistical model for the organisation in these networks.
- We rely on a clustering of the nodes to capture a social structure

Outline

Introduction: contact networks

Clustering dynamic networks

Simulations

Real data set

Clustering dynamic networks I

Issues

- Deal with the label switching across time.
- See the evolution of individual nodes: who is changing group between 2 time points?

Our goal: smooth recovery of the clusters across time.

Our contributions

Model: dynamic SBM

- We propose a dynamic version of the Stochastic Block Model;
- The graphs may be directed or undirected, binary or weighted;
- Groups and model parameters may change through time;
- Careful discussion on identifiability conditions on the model.

Inference

- We propose a variational expectation maximisation (VEM) algorithm to infer the nodes groups across time and the model parameters;
- We have a model selection criterion (ICL type) to select for the number of groups.

Static part modeling: SBM - binary case

Binary case; parameter $\boldsymbol{\beta}^t = (\beta_{ql}^t)_{1 \le q \le l \le Q}$

- Q groups (=colors •••).
- ► $\{Z_i^t\}_{1 \le i \le n}$ i.i.d. in $\{1, ..., Q\}$ not observed.
- ► Observations: presence/absence of an edge at time t, given through adjacency matrix {Y^t_{ii}}_{1≤i<j≤n},
- ► Conditional on $\{Z_i^t\}$'s, the r.v. Y_{ij}^t are independent $\mathscr{B}(\beta_{Z_i^t Z_i^t}^t)$.

Static part modeling: SBM - weighted case

Weighted case; parameter $(\boldsymbol{\beta}^{t}, \boldsymbol{\gamma}^{t}) = (\beta_{ql'}^{t} \gamma_{ql}^{t})_{1 \le q \le l \le Q}$

- Latent variables: idem
- ► Observations: weights Y_{ii}^t , where $Y_{ij}^t = 0$ or $Y_{ij}^t \in \mathbb{R}^s \setminus \{0\}$,
- Conditional on the {Z_i^t}'s, the random variables Y_{ij}^t are independent with density

$$\phi(\cdot;\beta_{Z_i^tZ_j^t}^t,\gamma_{Z_i^tZ_j^t}^t) := (1-\beta_{Z_i^tZ_j^t}^t)\delta_0(\cdot) + \beta_{Z_i^tZ_j^t}^tf(\cdot,\gamma_{Z_i^tZ_j^t}^t),$$

(Assumption: *f* has continuous cdf at zero).

Dynamics: Markov chain on latent groups

Latent Markov chain

- Across individuals: $(Z_i)_{1 \le i \le N}$ iid,
- Across time: Each $Z_i = (Z_i^t)_{1 \le t \le T}$ is a stationary Markov chain on $\{1, ..., Q\}$ with transition $\pi = (\pi_{qq'})_{1 \le q, q' \le Q}$ and initial stationary distribution $\alpha = (\alpha_1, ..., \alpha_Q)$.

Goal

Infer the parameter $\theta = (\pi, \beta, \gamma)$, recover the clusters $\{Z_i^t\}_{i,t}$ and follow their evolution through time.

Outline

Introduction: contact networks

Clustering dynamic networks

Simulations

Real data set

Clustering performances I

Indexes

- ► Global ARI: Adjusted Rand Index on the whole classification $\{Z_i^t\}_{1 \le i \le N, 1 \le t \le T}$,
- ► Averaged ARI: mean value of ARI_t, computed for each t on the classification {Z^t_i}_{1≤i≤N}. Easier ! Label switching between time steps !

Clustering performances II

Simulations setup

- ▶ Binary graphs, N = 100 nodes and $T \in \{5; 10\}$, 100 datasets,
- Q = 2 latent groups and $\pi \in {\pi_{low}, \pi_{med}, \pi_{high}}$

$$\boldsymbol{\pi}_{low} = \begin{pmatrix} 0.6 & 0.4 \\ 0.4 & 0.6 \end{pmatrix}; \boldsymbol{\pi}_{med} = \begin{pmatrix} 0.75 & 0.25 \\ 0.25 & 0.75 \end{pmatrix}; \boldsymbol{\pi}_{high} = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}.$$

• Connectivity parameter $\boldsymbol{\beta}$

Easiness	β_{11}	β_{12}	β_{22}
low-	0.2	0.1	0.15
low+	0.25	0.1	0.2
medium-	0.3	0.1	0.2
medium+	0.4	0.1	0.2
med w/ affiliation	0.3	0.1	0.3

Clustering performances III

Model selection

Simulation setup

- ► Binary model, Q = 4 groups, $\pi_{qq} = 0.91$ and $\pi_{ql} = 0.03$ for $q \neq l$, 100 datasets
- ► We draw i.i.d. random variables $\{\epsilon_{ql}\}_{1 \le q \le l \le 4} \in [-1, 1]$ and then choose $\beta_{qq} = 0.4 + \epsilon_{qq}0.1$ and $\beta_{ql} = 0.1 + \epsilon_{ql}0.1$ for $q \ne l$.

Outline

Introduction: contact networks

Clustering dynamic networks

Simulations

Real data set

Encounters between high school students I

Fournet and Barrat, 2014, http://www.sociopatterns.org/

- ► Face-to-face encounters of high school students (wearable sensors), T = 4 days, N = 27 students,
- Discrete weight with 3 bins. Selection of Q = 4 groups.

Reconstructed dynamics

Encounters between high school students II

Estimated connectivity parameters

Encounters between high school students III

Conclusions on this dataset

- groups 2 and 3 are communities, with resp. 3 and 4 individuals who permanently stay in the groups (social attractors),
- group 4 is also a community, with much less interaction,
- group 2 and 4 exchange students,
- Group 1 stable, low rate of interaction,
- A posteriori crossing info with gender
 - group 3 has male students only,
 - group 1 has a backbone of female students that remain in the group
 - females are less likely to change groups than males, a majority of females belongs low interaction groups 1 and 4 and they do not switch between these groups.

Conclusions

DynamicSBM

- Reconstruction of group's evolution through time
- Control of the label switching issue between different time steps
- Models binary or weighted datasets
- Model selection performed through ICL.

R package dynsbm available on the CRAN.

Paper published in JRSSB, 2017.

Companion paper (for Ecologists) in Royal Society Open Science, 2017.

Thanks for your attention !