

Life course epidemiology:

From Bradford Hill's viewpoints to counterfactual comparisons

Bianca L De Stavola

Great Ormond Street Institute of Child Health, University College London

30th Bradford Hill Memorial Lecture

London School of Hygiene and Tropical Medicine, 20 May 2021

Causal Questions Counterfactuals Example Further Challenges Conclusions

Austin Bradford Hill

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣

Bianca L De Stavola/Viewpoints & counterfactuals

・ コット (雪) ・ (目) ・ ヨ)

"None of my nine viewpoints can bring indisputable evidence for or against the cause-and-effect hypothesis and none can be required as a sine qua non."

The "criteria"

Life Course Epidemiology Why important

► Many acute illnesses and chronic or recurring conditions that appear in later life are shaped by processes experienced in utero, childhood, adolescence or early adulthood.

Life Course Epidemiology Why important

► Many acute illnesses and chronic or recurring conditions that appear in later life are shaped by processes experienced in utero, childhood, adolescence or early adulthood.

Barker hypothesis: drew a link between foetal nutritional experience and later adult heart dis-

ease [Barker & Osmond 1986].

・ コット (雪) ・ (目) ・ ヨ)

Life Course Epidemiology Why important

► Many acute illnesses and chronic or recurring conditions that appear in later life are shaped by processes experienced in utero, childhood, adolescence or early adulthood.

Barker hypothesis: drew a link between foetal nutritional experience and later adult heart dis-

ease [Barker & Osmond 1986].

Later expanded into the developmental origins of health and disease (DOHaD) paradigms

[Bianco-Miotto et al. 2017].

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Complexities Many dimensions

The field's strength is the recognition that origins of disease are complex $_{\rm [Ben \ Shlomo \ \& \ Kuh, \ 2002]}\ldots$

Bianca L De Stavola/Viewpoints & counterfactuals

Complexities

... and involve time-varying exposures and outcomes.

(日)

э

UCL

- Focus of life course investigations:
 - understand variations in disease and health across populations
 - devise interventions to prevent disease/ increase resilience.
- ► However, exposures:
 - arise in different periods (in utero, infancy, ...);
 - most often vary in time;
 - might exert their influence during different phases in life;
 - are highly interconnected.

► Available data are generally sparse, relative to the timings of these mechanisms.

▶ Thus the analytical challenges are considerable.

・ コート ふぼう ふほう ふ ロッ

^AUCL

- ► Focus of life course investigations:
 - understand variations in disease and health across populations
 - devise interventions to prevent disease/ increase resilience.
- ► However, exposures:
 - arise in different periods (in utero, infancy, ...);
 - most often vary in time;
 - might exert their influence during different phases in life;
 - are highly interconnected.

► Available data are generally sparse, relative to the timings of these mechanisms.

▶ Thus the analytical challenges are considerable.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

UCL

- ► Focus of life course investigations:
 - understand variations in disease and health across populations
 - devise interventions to prevent disease/ increase resilience.
- ► However, exposures:
 - arise in different periods (in utero, infancy, ...);
 - most often vary in time;
 - might exert their influence during different phases in life;
 - are highly interconnected.

► Available data are generally sparse, relative to the timings of these mechanisms.

Thus the analytical challenges are considerable.

▲□▶▲□▶▲□▶▲□▶ □ のので

UCL

- ► Focus of life course investigations:
 - understand variations in disease and health across populations
 - devise interventions to prevent disease/ increase resilience.
- ► However, exposures:
 - arise in different periods (in utero, infancy, ...);
 - most often vary in time;
 - might exert their influence during different phases in life;
 - are highly interconnected.
- ► Available data are generally sparse, relative to the timings of these mechanisms.
- ► Thus the analytical challenges are considerable.

▲□▶▲□▶▲□▶▲□▶ □ のので

2 Counterfactuals

Further Challenges Multiple Pathways Biases

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

► Consider a simplification of the earlier diagram whereby we ask whether respiratory illnesses in infancy and childhood influence adult lung function*:

Several alternative possible generating mechanisms of what might be observed:

- (a) Critical period model
- b) Cumulative exposure model
- (c) Sensitive period model
- d) Pathways model

*While appropriately accounting for confounding induced by other life course paths. 🗇 🕨 🛪 🗄 🕨 🔹 🔊 ९ ९ ९

► Consider a simplification of the earlier diagram whereby we ask whether respiratory illnesses in infancy and childhood influence adult lung function*:

► Several alternative possible generating mechanisms of what might be observed:

- (a) Critical period model
- b) Cumulative exposure model
- (c) Sensitive period model
- (d) Pathways model

*While appropriately accounting for confounding induced by other life course paths. 🗇 🕨 🔙 🕨 🛛 🚊 👘 🖓 ५ 🤆

► Consider a simplification of the earlier diagram whereby we ask whether respiratory illnesses in infancy and childhood influence adult lung function*:

► Several alternative possible generating mechanisms of what might be observed:

- (a) Critical period model
 - b) Cumulative exposure model
 - c) Sensitive period model
- (d) Pathways model

*While appropriately accounting for confounding induced by other life course paths. 🗇 🕨 く 🖹 🕨 く 🖹 👘 🗧 🚽 つ ९ ୯

► Consider a simplification of the earlier diagram whereby we ask whether respiratory illnesses in infancy and childhood influence adult lung function*:

► Several alternative possible generating mechanisms of what might be observed:

- (a) Critical period model
 - b) Cumulative exposure model
- c) Sensitive period model
- (d) Pathways model

*While appropriately accounting for confounding induced by other life course paths. 🗇 🕨 < 🗉 🕨 🗧 🔊 ୨... 🦉

^AUCI

► Consider a simplification of the earlier diagram whereby we ask whether respiratory illnesses in infancy and childhood influence adult lung function*:

► Several alternative possible generating mechanisms of what might be observed:

(a) Critical period model
(b) Cumulative exposure model
(c) Sensitive period model
(d) Pathways model

*While appropriately accounting for confounding induced by other life course paths. 🗇 🕨 🛪 🗄 🕨 🛓 🖤 🔍 🔿

Bianca L De Stavola/Viewpoints & counterfactuals

^AUCI

► Consider a simplification of the earlier diagram whereby we ask whether respiratory illnesses in infancy and childhood influence adult lung function*:

► Several alternative possible generating mechanisms of what might be observed:

(a) Critical period model
(b) Cumulative exposure mod
(c) Sensitive period model
(d) Bathways model

*While appropriately accounting for confounding induced by other life course paths. 🗗 🕨 🗧 🕨 🛓 👘 🚊 🚽 🔈 🔍 🔿

Bianca L De Stavola/Viewpoints & counterfactuals

► Consider a simplification of the earlier diagram whereby we ask whether respiratory illnesses in infancy and childhood influence adult lung function*:

► Several alternative possible generating mechanisms of what might be observed:

(a) Critical period model
(b) Cumulative exposure model
(c) Sensitive period model
(d) Pathways model

*While appropriately accounting for confounding induced by other life course paths. 🗗 🕨 🗧 🕨 🛓 👘 🚊 👘 🖓 ۹. 🕐

Bianca L De Stavola/Viewpoints & counterfactuals

► Consider a simplification of the earlier diagram whereby we ask whether respiratory illnesses in infancy and childhood influence adult lung function*:

► Several alternative possible generating mechanisms of what might be observed:

- (a) Critical period model
- b) Cumulative exposure model
- (c) Sensitive period model
- (d) Pathways model

*While appropriately accounting for confounding induced by other life course paths. 🗇 🕨 ሩ 🖹 🕨 🛓 🖉 🔍 👁

Statistical Models

^AUCL

► Traditionally, these conceptual models are compared in terms of statistical support for certain parameters [Mishra *et al.* 2009; Smith *et al.* 2015; Green & Popham 2017; Chumbley 2021].

► This involves fitting a regression model for the outcome (*e.g.* adult lung function) that includes all the relevant exposures, irrespectively of their time ordering.

▶ Importantly the thorny issue of time-varying confounding is not generally addressed. However, as the questions posed are causal, this cannot be ignored.

・ コット (雪) ・ (目) ・ ヨ)

Statistical Models

► Traditionally, these conceptual models are compared in terms of statistical support for certain parameters [Mishra *et al.* 2009; Smith *et al.* 2015; Green & Popham 2017; Chumbley 2021].

► This involves fitting a regression model for the outcome (*e.g.* adult lung function) that includes all the relevant exposures, irrespectively of their time ordering.

▶ Importantly the thorny issue of time-varying confounding is not generally addressed. However, as the questions posed are causal, this cannot be ignored.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Statistical Models

^AUCL

► Traditionally, these conceptual models are compared in terms of statistical support for certain parameters [Mishra *et al.* 2009; Smith *et al.* 2015; Green & Popham 2017; Chumbley 2021].

► This involves fitting a regression model for the outcome (*e.g.* adult lung function) that includes all the relevant exposures, irrespectively of their time ordering.

► Importantly the thorny issue of time-varying confounding is not generally addressed. However, as the questions posed are causal, this cannot be ignored.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Counterfactual Reasoning

► Recent developments in causal inference offer several tools to deal with these challenges.

► Useful in this context is counterfactual thinking, which involves questions such as

"How would the world have been, had something been different?"

- ► We can formalise this question by:
 - invoking the notion of potential outcomes.
 - use (functions of) these potential outcomes to define causal effects.

・ コット (雪) ・ (目) ・ ヨ)

Counterfactual Reasoning

^AUCL

► Recent developments in causal inference offer several tools to deal with these challenges.

► Useful in this context is counterfactual thinking, which involves questions such as

"How would the world have been, had something been different?"

- ▶ We can formalise this question by:
 - invoking the notion of potential outcomes.
 - use (functions of) these potential outcomes to define causal effects.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Counterfactual Reasoning

^AUCL

► Recent developments in causal inference offer several tools to deal with these challenges.

► Useful in this context is counterfactual thinking, which involves questions such as

"How would the world have been, had something been different?"

- ▶ We can formalise this question by:
 - invoking the notion of potential outcomes.
 - use (functions of) these potential outcomes to define causal effects.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

A short detour Potential Outcomes

▶ Potential Outcomes: Let *Y* denote the outcome and A_1 and A_2 binary exposures of interest.

- Then, we define $Y(a_1)$ as the potential outcome when A_1 is set to take the value a_1 (0/1).
- Similarly, we define $Y(a_2)$ as the potential outcome when A_2 is set to take the value a_2 (0/1).
- ► We also define:
 - $Y(a_1, a_2)$ as the value that Y would take if we were hypothetically to intervene on A_1 and set it to take the value a_1 and set A_2 to take the value a_2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ○○○

A short detour Potential Outcomes

▶ Potential Outcomes: Let *Y* denote the outcome and A_1 and A_2 binary exposures of interest.

- Then, we define $Y(a_1)$ as the potential outcome when A_1 is set to take the value a_1 (0/1).
- Similarly, we define $Y(a_2)$ as the potential outcome when A_2 is set to take the value a_2 (0/1).
- We also define:
 - $Y(a_1, a_2)$ as the value that Y would take if we were hypothetically to intervene on A_1 and set it to take the value a_1 and set A_2 to take the value a_2 .

▲□▶▲□▶▲□▶▲□▶ □ のので

A short detour A Selection of Causal Effects

Causal effects (*estimands*) can then be defined in terms of expectations ($E(\cdot)$) of these potential outcomes for the population of interest [†]:

► Total causal effects (TCE):

$$TCE_1 = E \{Y(a_1 = 1)\} - E \{Y(a_1 = 0)\}$$

$$TCE_2 = E \{Y(a_2 = 1)\} - E \{Y(a_2 = 0)\}$$

These are comparisons of alternative hypothetical worlds that allows us to capture the notion of causal effects.

► Controlled direct effect (CDE) of A_1 , when we set the later exposure A_2 to take the value a_2 , as

 $CDE_1(a_2) = E\{Y(a_1 = 1, a_2)\} - E\{Y(a_1 = 0, a_2)\},\$

In these alternative hypothetical worlds A_2 does not change, capturing the sole effect of A_1 that does not involve A_2 .

[†] Bianca L De Stavola/Viewpoints & counterfactuals

A short detour A Selection of Causal Effects

Causal effects (*estimands*) can then be defined in terms of expectations $(E(\cdot))$ of these potential outcomes for the population of interest [†]

Total causal effects (TCE):

$$TCE_1 = E \{ Y(a_1 = 1) \} - E \{ Y(a_1 = 0) \}$$

$$TCE_2 = E \{ Y(a_2 = 1) \} - E \{ Y(a_2 = 0) \}$$

These are comparisons of alternative hypothetical worlds that allows us to capture the notion of causal effects.

 \blacktriangleright Controlled direct effect (CDE) of A_1 , when we set the later exposure A_2 to take the value a_2 , as

 $CDE_1(a_2) = E\{Y(a_1 = 1, a_2)\} - E\{Y(a_1 = 0, a_2)\},\$

In these alternative hypothetical worlds A_2 does not change, capturing the sole effect of A_1 that does not involve A_2 .

Bianca L De Stavola/Viewpoints & counterfactuals

► By comparing the strength of the two arrows we can reach more robust conclusions about the support for these models

► These are comparisons of causal effects defined from first principles: they do not refer to specific regression (conditional) parameters.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

► By comparing the strength of the two arrows we can reach more robust conclusions about the support for these models

► These are comparisons of causal effects defined from first principles: they do not refer to specific regression (conditional) parameters.

・ コット (雪) ・ (目) ・ ヨ)

Eating Disorders in Adolescence Part I: birth weight and BMI at 12y as exposures

Red arrows indicate causal paths from A_1 to Y that involve A_2 . **Black** arrows indicate causal paths from A_1 to Y that do not involve A_2 . **Grey** arrows indicate confounding paths for causal relationships. Because birth weight i continuous we look at shifting its distribution when we set a_2 .

Bianca L De Stavola/Viewpoints & counterfactuals

[•]UCL

Eating Disorders in Adolescence Part I: birth weight and BMI at 12y as exposures

Red arrows indicate causal paths from A_1 to Y that involve A_2 . **Black** arrows indicate causal paths from A_1 to Y that do not involve A_2 . Grey arrows indicate confounding paths for causal relationships. Because birth weight i continuous we look at shifting its distribution when we set a_2 .

Bianca L De Stavola/Viewpoints & counterfactuals

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

^AUCI

Eating Disorders in Adolescence Part I: birth weight and BMI at 12y as exposures

- Strong causal effect of BMI at 12y: critical period model?
- Some evidence for a pathway model.

・ロット 小型 マイロマ

^AUCI

When might an intervention be most effective?

► Although BMI at 12y has the strongest effect on the BE score, it is the most proximal and possibly the less amenable to interventions.

▶ We might consider interventions that are further upstream and ask:

What would be the consequences of changing the distribution of BMI at 12 by intervening earlier in the life course?

► To address this sort of questions we could use direct and indirect interventional effects [VanderWeele et al. 2014].

When might an intervention be most effective?

► Although BMI at 12y has the strongest effect on the BE score, it is the most proximal and possibly the less amenable to interventions.

▶ We might consider interventions that are further upstream and ask:

What would be the consequences of changing the distribution of BMI at 12 by intervening earlier in the life course?

► To address this sort of questions we could use direct and indirect interventional effects [VanderWeele et al. 2014].

When might an intervention be most effective?

► Although BMI at 12y has the strongest effect on the BE score, it is the most proximal and possibly the less amenable to interventions.

▶ We might consider interventions that are further upstream and ask:

What would be the consequences of changing the distribution of BMI at 12 by intervening earlier in the life course?

► To address this sort of questions we could use direct and indirect interventional effects [VanderWeele et al. 2014].

When might an intervention be most effective?

► Although BMI at 12y has the strongest effect on the BE score, it is the most proximal and possibly the less amenable to interventions.

▶ We might consider interventions that are further upstream and ask:

What would be the consequences of changing the distribution of BMI at 12 by intervening earlier in the life course?

► To address this sort of questions we could use direct and indirect interventional effects [VanderWeele et al. 2014].

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

When might an intervention be most effective?

► Although BMI at 12y has the strongest effect on the BE score, it is the most proximal and possibly the less amenable to interventions.

▶ We might consider interventions that are further upstream and ask:

What would be the consequences of changing the distribution of BMI at 12 by intervening earlier in the life course?

► To address this sort of questions we could use direct and indirect interventional effects [VanderWeele et al. 2014].

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Another Short Detour Interventional Direct and Interventional Indirect Effects

UCL

- Interventional effects are defined in terms of mean potential outcomes where again we intervene or not on A_1 and A_2 but this time the focus of our interventions is in terms of distributions for A_2 .
- Formally, we define the mean potential outcome with the form[§]:

$$E\left\{Y\left(\boldsymbol{A}_{1}+\boldsymbol{s}_{1},\tilde{\boldsymbol{A}}_{2}^{\boldsymbol{A}_{1}+\boldsymbol{s}_{2}|\boldsymbol{C}}\right)\right\},\$$

where s_1 and s_2 take value 0 or σ (~ indicates that it is a random draw.).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

[§]Note that now I am allowing A_1 and A_2 to be continuous.

Another Short Detour Interventional Direct and Interventional Indirect Effects

- Interventional effects are defined in terms of mean potential outcomes where again we intervene or not on A_1 and A_2 but this time the focus of our interventions is in terms of distributions for A_2 .
- Formally, we define the mean potential outcome with the form[§]:

$$E\left\{Y\left(\boldsymbol{A}_{1}+\boldsymbol{s}_{1},\tilde{\boldsymbol{A}}_{2}^{\boldsymbol{A}_{1}+\boldsymbol{s}_{2}|\boldsymbol{C}}\right)\right\},\$$

where s_1 and s_2 take value 0 or σ (~ indicates that it is a random draw.).

Distributions of A_2 that would arise had A_1 been (or not) shifted up by σ :

(ignoring C for simplicity)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

[§]Note that now I am allowing A_1 and A_2 to be continuous.

UCI

Another Short Detour Formal definitions

^AUCL

► Formally:

Interventional DE =
$$E\left\{Y\left(A_{1}+\sigma,\tilde{A}_{2}^{A_{1}|C}\right)\right\}-E\left\{Y\left(A_{1},\tilde{A}_{2}^{A_{1}|C}\right)\right\}$$

Interventional IE = $E\left\{Y\left(A_{1}+\sigma,\tilde{A}_{2}^{A_{1}+\sigma|C}\right)\right\}-E\left\{Y\left(A_{1}+\sigma,\tilde{A}_{2}^{A_{1}|C}\right)\right\}$

► Interventional effects are contrasts where it is the distribution of A_2 that is hypothetically manipulated.

▶ They call upon less stringent assumptions than the more intuitive natural direct and indirect effects (in particular: no requirement for intermediate confounding), with their sum capturing the total association of A_1 with Y.

▶ These definitions do not rely on being able to manipulate A_1 to be meaningful.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Another Short Detour Formal definitions

UCL

► Formally:

Interventional DE = $E\left\{Y\left(A_{1}+\sigma,\tilde{A}_{2}^{A_{1}|C}\right)\right\}-E\left\{Y\left(A_{1},\tilde{A}_{2}^{A_{1}|C}\right)\right\}$ Interventional IE = $E\left\{Y\left(A_{1}+\sigma,\tilde{A}_{2}^{A_{1}+\sigma|C}\right)\right\}-E\left\{Y\left(A_{1}+\sigma,\tilde{A}_{2}^{A_{1}|C}\right)\right\}$

▶ Interventional effects are contrasts where it is the distribution of A_2 that is hypothetically manipulated.

► They call upon less stringent assumptions than the more intuitive natural direct and indirect effects (in particular: no requirement for intermediate confounding), with their sum capturing the total association of A_1 with Y.

▶ These definitions do not rely on being able to manipulate A_1 to be meaningful.

(日) (日) (日) (日) (日) (日) (日)

Another Short Detour Formal definitions

► Formally:

Interventional DE =
$$E\left\{Y\left(A_{1}+\sigma,\tilde{A}_{2}^{A_{1}|C}\right)\right\}-E\left\{Y\left(A_{1},\tilde{A}_{2}^{A_{1}|C}\right)\right\}$$

Interventional IE = $E\left\{Y\left(A_{1}+\sigma,\tilde{A}_{2}^{A_{1}+\sigma|C}\right)\right\}-E\left\{Y\left(A_{1}+\sigma,\tilde{A}_{2}^{A_{1}|C}\right)\right\}$

▶ Interventional effects are contrasts where it is the distribution of A_2 that is hypothetically manipulated.

► They call upon less stringent assumptions than the more intuitive natural direct and indirect effects (in particular: no requirement for intermediate confounding), with their sum capturing the total association of A_1 with Y.

► These definitions do not rely on being able to manipulate A_1 to be meaningful.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

UCL

Eating Disorders in Adolescence Part II: Interventional effects

Bianca L De Stavola/Viewpoints & counterfactuals

・ロット (雪) (日) (日)

UCL

Eating Disorders in Adolescence Part II: Interventional effects

(日)

^AUCL

Eating Disorders in Adolescence Part II: Interventional effects

Bianca L De Stavola/Viewpoints & counterfactuals

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Eating Disorders in Adolescence Part II: Interventional effects

Eating Disorders in Adolescence Part II: Interventional effects

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

► Most life course investigations are more complex than this: they involve multiple interlinked and time-varying exposures.

- ► Understanding the pathways linking these exposures involves dealing with multiple mediators.
- ► This is hindered by our limited knowledge of how these variables are interconnected.

► However, a generalization of the interventional effects for multiple mediators [Vansteelandt and Daniel 2017, Micali *et al.* 2018] allows us to study these pathways without requiring us:

- to specify the causal order among the mediators,
- to control for their common causes.

► Most life course investigations are more complex than this: they involve multiple interlinked and time-varying exposures.

- ► Understanding the pathways linking these exposures involves dealing with multiple mediators.
- ► This is hindered by our limited knowledge of how these variables are interconnected.

► However, a generalization of the interventional effects for multiple mediators [Vansteelandt and Daniel 2017, Micali *et al.* 2018] allows us to study these pathways without requiring us:

- to specify the causal order among the mediators,
- to control for their common causes.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

► Most life course investigations are more complex than this: they involve multiple interlinked and time-varying exposures.

- ► Understanding the pathways linking these exposures involves dealing with multiple mediators.
- ► This is hindered by our limited knowledge of how these variables are interconnected.

► However, a generalization of the interventional effects for multiple mediators [Vansteelandt and Daniel 2017, Micali *et al.* 2018] allows us to study these pathways without requiring us:

- to specify the causal order among the mediators,
- to control for their common causes.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

► Most life course investigations are more complex than this: they involve multiple interlinked and time-varying exposures.

- ► Understanding the pathways linking these exposures involves dealing with multiple mediators.
- ► This is hindered by our limited knowledge of how these variables are interconnected.

► However, a generalization of the interventional effects for multiple mediators [Vansteelandt and Daniel 2017, Micali *et al.* 2018] allows us to study these pathways without requiring us:

- to specify the causal order among the mediators,
- to control for their common causes.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- ► Consider all repeated BMI measures from age 7 to age 12 jointly,
- ▶ and then separate early from late growth mediators:

- ► Consider all repeated BMI measures from age 7 to age 12 jointly,
- ▶ and then separate early from late growth mediators:

- ► Consider all repeated BMI measures from age 7 to age 12 jointly,
- ▶ and then separate early from late growth mediators:

- ► Consider all repeated BMI measures from age 7 to age 12 jointly,
- ▶ and then separate early from late growth mediators:

Potential Biases

► These results could be affected by bias, in particular:

- Measurement error bias

We can extend the model exploiting the repeated nature of the BMI observations.

- Confounding bias

Could do sensitivity analyses and/or adopt alternative study designs.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Potential Biases

- ► These results could be affected by bias, in particular:
 - Measurement error bias
 We can extend the model exploiting the repeated nature of the BMI observations.
 - Confounding bias Could do sensitivity analyses and/or adopt alternative study designs.

▲□▶▲□▶▲□▶▲□▶ □ のので

► View the BMI observations as manifestation of latent growth features[¶] and derive their interventional effects [extending work by Sullivan *et al.* (2021)].

Bianca L De Stavola/Viewpoints & counterfactuals

► View the BMI observations as manifestation of latent growth features¶ and derive their interventional effects [extending work by Sullivan *et al.* (2021)].

Bianca L De Stavola/Viewpoints & counterfactuals

^AUCL

► View the BMI observations as manifestation of latent growth features¶ and derive their interventional effects [extending work by Sullivan *et al.* (2021)].

[¶]Random intercepts and slopes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Bianca L De Stavola/Viewpoints & counterfactuals

^AUCL

► View the BMI observations as manifestation of latent growth features¶ and derive their interventional effects [extending work by Sullivan *et al.* (2021)].

¹ Random intercepts and slopes.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Confounding bias Quasi-experimental designs

► To avoid the biases that would arise from incomplete controlling of confounding, researchers have found imaginative ways to proxy experimental conditions:

- Sibling comparison studies
- Mendelian randomisation (MR) studies.

▶ We ought to be caution with both when using them in life course investigations.

・ コット (雪) (雪) (日)

Confounding bias Quasi-experimental designs

► To avoid the biases that would arise from incomplete controlling of confounding, researchers have found imaginative ways to proxy experimental conditions:

- Sibling comparison studies
- Mendelian randomisation (MR) studies.

► We ought to be caution with both when using them in life course investigations.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Sibling Comparison Studies

Research report

Maternal smoking during pregnancy and offspring antisocial behaviour: findings from a longitudinal investigation of discordant siblings

Angela D Paradis,¹ Edmond D Shenassa,^{1,2,3} George D Papandonatos,⁴ Michelle L Rogers,⁵ Stephen L Buka¹

Section Editors: Peter J. Davis/Gregory J. Crosby

Early Childhood Exposure to Anesthesia and Risk of Developmental and Behavioral Disorders in a Sibling Birth Cohort

Charles DiMaggio, PhD,*† Lena S. Sun, MD,† and Guohua Li, MD, DrPH*†

ISEA

nal Jacomal of Epidemiolegy; 2018, 196–185 doi: 18.18850jin/dyc186 ccess Publication Date: 8 September 2017 Driginal acticle

[•]UCL

Mental Health

Re-examining the link between prenatal maternal anxiety and child emotional difficulties, using a sibling design

Mona Bekkhus,¹* Yunsung Lee,² Rannveig Nordhagen,² Per Magnus,² Sven O Samuelsen^{2,3} and Anne IH Borge¹

Child Development, March/April 2020, Volume 91, Number 2, Pages 456-470

Maternal Perinatal and Concurrent Anxiety and Mental Health Problems in Early Childhood: A Sibling-Comparison Study

< 日 > < 同 > < 回 > < 回 > < □ > <

Line C. Gjerde Norteegian Institute of Public Health and University of Oslo Espen M. Eilertsen Norwegian Institute of Public Health

Thalia C. Elev and Tom A. McAdams

Ted Reichborn-Kiennerud. Espen Røvsamb. and

► They can be viewed as matched cohort studies where the matching removes shared genetic and shared (early) environmental factors.

Sibling Comparison Studies

UCL

► Sibling comparison should be free from confounding by factors that are constant within the pair.

Estimation proceeds as for standard matched designs where only discordant pairs contribute to the estimation.

► It is not generally highlighted however that [Sjolader et al. 2016;Petersen & Lange 2019; Frissel 2021]

- (a) There can still be residual confounding from non-shared environmental factors as well as time-varying confounders.
- (b) Different estimation methods target different estimands and populations:
 - this is because the observational unit is the set and hence the exposure is two-dimensional.
- (c) Selection of discordant pairs has implication for representativeness.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Sibling Comparison Studies

UCL

► Sibling comparison should be free from confounding by factors that are constant within the pair.

Estimation proceeds as for standard matched designs where only discordant pairs contribute to the estimation.

► It is not generally highlighted however that [Sjolader et al. 2016;Petersen & Lange 2019; Frissel 2021]

- (a) There can still be residual confounding from non-shared environmental factors as well as time-varying confounders.
- (b) Different estimation methods target different estimands and populations:
 - this is because the observational unit is the set and hence the exposure is two-dimensional.
- (c) Selection of discordant pairs has implication for representativeness.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Sibling Comparison Studies

UCL

► Sibling comparison should be free from confounding by factors that are constant within the pair.

Estimation proceeds as for standard matched designs where only discordant pairs contribute to the estimation.

► It is not generally highlighted however that [Sjolader et al. 2016;Petersen & Lange 2019; Frissel 2021]

- (a) There can still be residual confounding from non-shared environmental factors as well as time-varying confounders.
- (b) Different estimation methods target different estimands and populations:
 - this is because the observational unit is the set and hence the exposure is two-dimensional.
- (c) Selection of discordant pairs has implication for representativeness.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Sibling Comparison Studies

^AUCL

► Sibling comparison should be free from confounding by factors that are constant within the pair.

Estimation proceeds as for standard matched designs where only discordant pairs contribute to the estimation.

► It is not generally highlighted however that [Sjolader et al. 2016;Petersen & Lange 2019; Frissel 2021]

- (a) There can still be residual confounding from non-shared environmental factors as well as time-varying confounders.
- (b) Different estimation methods target different estimands and populations:
 - this is because the observational unit is the set and hence the exposure is two-dimensional.
- (c) Selection of discordant pairs has implication for representativeness.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

MR Studies

► MR studies exploit genetic variation as instrumental variable (IV) to test whether an exposure has a causal effect on an outcome and, with additional assumptions, to estimate a causal effect.

▶ The three core assumptions for a variable *R* to be an IV:

IV3 is known as the exclusion restriction (ER) assumption and this is one that is most at risk of not being met in life course investigations.

・ ロ マ チ 全 早 マ キ 雪 マ ト ・ 日 マ

MR Studies

► MR studies exploit genetic variation as instrumental variable (IV) to test whether an exposure has a causal effect on an outcome and, with additional assumptions, to estimate a causal effect.

▶ The three core assumptions for a variable *R* to be an IV:

► IV3 is known as the exclusion restriction (ER) assumption and this is one that is most at risk of not being met in life course investigations.

・ ロ マ チ 全 早 マ キ 雪 マ ト ・ 日 マ

► When an exposure is time-varying, ER is most likely not met, even if we focussed on a particular time point [Lebreque *et al.*, 2019; Burgess *et al.* 2021]:

▶ If we wished to study the causal effect of A_1 , for Z to be an IV the red arrow should be absent;

▶ If we wished to study the causal effect of A_2 , for Z to be an IV the blue arrow should be absent.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

► When an exposure is time-varying, ER is most likely not met, even if we focussed on a particular time point [Lebreque et al., 2019; Burgess et al. 2021]:

• If we wished to study the causal effect of A_1 , for Z to be an IV the

Quasi-experimental study designs are to be judged as carefully as other types of observational studies!

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- 3 specificity: use of negative controls
- 4 temporality: life course view-point
- 5 biological gradient: flexible modelling
- 6 plausibility: substantive knowledge
- 7 coherence: ... stated in DAGs
- 8 experiment: quasi-experimental designs

9 analogy: (?)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- 3 specificity: use of negative controls
- 4 temporality: life course view-point
- 5 biological gradient: flexible modelling
- 6 plausibility: substantive knowledge
- 7 coherence: ... stated in DAGs
- 8 experiment: quasi-experimental designs

9 analogy: (?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- **3** specificity: use of negative controls
- 4 temporality: life course view-point
- 5 biological gradient: flexible modelling
- 6 plausibility: substantive knowledge
- coherence: ... stated in DAGs
- 8 experiment: quasi-experimental designs
- 9 analogy: (?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- 3 specificity: use of negative controls
- 4 temporality: life course view-point
- 5 biological gradient: flexible modelling
- 6 plausibility: substantive knowledge
- 7 coherence: ... stated in DAGs
- 8 experiment: quasi-experimental designs

9 analogy: (?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- 3 specificity: use of negative controls
- 4 temporality: life course view-point
- 5 biological gradient: flexible modelling
- 6 plausibility: substantive knowledge
- 7 coherence: ... stated in DAGs
- 8 experiment: quasi-experimental designs

9 analogy: (?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- 3 specificity: use of negative controls
- 4 temporality: life course view-point
- 5 biological gradient: flexible modelling
- 6 plausibility: substantive knowledge
- 7 coherence: ... stated in DAGs
- 8 experiment: quasi-experimental designs
- 9 analogy: (?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- 3 specificity: use of negative controls
- 4 temporality: life course view-point
- **5** biological gradient: flexible modelling
- 6 plausibility: substantive knowledge ...
- 7 coherence: ... stated in DAGs
- 8 experiment: quasi-experimental designs
- 9 analogy: (?)

▲□▶▲□▶▲□▶▲□▶ □ のQへ

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- 3 specificity: use of negative controls
- 4 temporality: life course view-point
- **5** biological gradient: flexible modelling
- 6 plausibility: substantive knowledge ...
- 7 coherence: ... stated in DAGs
- 8 experiment: quasi-experimental designs
- 9 analogy: (?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- 3 specificity: use of negative controls
- 4 temporality: life course view-point
- **5** biological gradient: flexible modelling
- 6 plausibility: substantive knowledge ...
- 7 coherence: ... stated in DAGs
- 8 experiment: quasi-experimental designs
- 9 analogy: (?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

How far are we from the viewpoints?

Then and now:

- 1 strength: confounding and sensitivity analysis
- 2 consistency: triangulation of evidence
- 3 specificity: use of negative controls
- 4 temporality: life course view-point
- 5 biological gradient: flexible modelling
- 6 plausibility: substantive knowledge ...
- coherence: ... stated in DAGs

A logical continuum but currently with greater focus on a more precise definition of what effect is being targeted.

・ コット (雪) ・ ヨット - ヨッ

^AUCI

Bianca L De Stavola/Viewpoints & counterfactuals

UCL

► This is joint work with Andrew Pickles and Moritz Herle.

▶ Thinking on these topics comes from long-term collaborations with Rhian Daniel and the STRATOS Causal Inference Topic Group (Els Goetghebeur, Saskia le Cessie, Ingeborg Waernbaum, Vanessa Didelez, and Erica Moodie), and many conversations with Stijn Vansteelandt.

► Finally, I have had the most nurturing experience under my academic mentors, *David Cox* and *Michael Hills*.

Thank you all!

Bianca L De Stavola/Viewpoints & counterfactuals

・ コット (雪) ・ ヨット - ヨッ

- ► This is joint work with Andrew Pickles and Moritz Herle.
- ► Thinking on these topics comes from long-term collaborations with *Rhian Daniel* and the *STRATOS Causal Inference Topic Group* (*Els Goetghebeur, Saskia le Cessie, Ingeborg Waernbaum, Vanessa Didelez,* and *Erica Moodie*), and many conversations with *Stijn Vansteelandt*.
- ► Finally, I have had the most nurturing experience under my academic mentors, *David Cox* and *Michael Hills*.

Thank you all!

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- ► This is joint work with Andrew Pickles and Moritz Herle.
- ► Thinking on these topics comes from long-term collaborations with *Rhian Daniel* and the *STRATOS Causal Inference Topic Group* (*Els Goetghebeur, Saskia le Cessie, Ingeborg Waernbaum, Vanessa Didelez,* and *Erica Moodie*), and many conversations with *Stijn Vansteelandt*.
- ► Finally, I have had the most nurturing experience under my academic mentors, *David Cox* and *Michael Hills*.

Thank you all!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- ► This is joint work with Andrew Pickles and Moritz Herle.
- ► Thinking on these topics comes from long-term collaborations with *Rhian Daniel* and the *STRATOS Causal Inference Topic Group* (*Els Goetghebeur, Saskia le Cessie, Ingeborg Waernbaum, Vanessa Didelez,* and *Erica Moodie*), and many conversations with *Stijn Vansteelandt*.
- ► Finally, I have had the most nurturing experience under my academic mentors, *David Cox* and *Michael Hills*.

Thank you all!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

References

- Ben Shlomo and Kuh International Journal of Epidemiology 2002; 31: 285-293
- Bradford Hill Proceedings of the Royal Society of Medicine 1965;, 58(2): 295-300
- Chumbley et al. International Journal of Epidemiology 2021
- De Stavola, Herle, and Pickles Annual Review of Statistics and its Applications 2022
- Frissel American Journal of Epidemiology 2021
- Goetghebeur et al. Statistics in Medicine 2020, 39 (30), 4922-4948
- Micali et al. Epidemiology, 2018; 29, 579-589
- Nicholls and Viner J Am Acad Child Adolesc Psychiatry 2009; 48: 791-99
- Petersen and Lange 2019 Epidemiology 2019; 31
- Sjolader et al. Epidemiologic Methods 2010; 1(1)
- VanderWeele et al. Epidemiology 2014; 25: 300-306
- VanderWeele Observational Studies 2020; 6
- Vansteelandt and Daniel Epidemiology 2017; 28: 258-265
- Zehr et al. Horm Behav 2007, 52: 427-35

Bianca L De Stavola/Viewpoints & counterfactuals

33/33

・ コット (雪) ・ ヨット - ヨッ