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Graduate Diploma Module 1  –  Specimen Question 1 
 
 
Explain briefly why it might be reasonable to use a Poisson distribution to model the number 
of claims made over a year on a particular type of insurance policy. 

(4) 
 
An insurance company assumes that the total number of claims its clients make over a year 
follows a Poisson distribution with mean λ, and that the sizes of individual claims (in £) are 
independent and identically distributed with mean μ and variance σ 2. 
 
(i) Derive expressions for the mean and variance of the total cost (£) of all claims over a 

year under this model. 
 

[You may use without proof the result Var(Y) = E(Var(Y | X)) + Var(E(Y | X)).] 
 

(8) 
 
(ii) For each of the following fields of insurance, state whether or not the assumption that 

the sizes of all claims are independent is a reasonable one, justifying your answer. 
 

(a) UK motor car insurance, with claims for accident repairs. 
 

(b) Property damage claims in a particular US city liable to hurricanes. 
 

(8) 
 
 



Graduate Diploma Module 1  –  Specimen Question 1  –  Solution 
 
 
It is reasonable to assume that there is a large number of clients, each with a small chance of 
making a claim during a year, with claims arising largely at random.  The numbers of claims 
in non-overlapping short time periods can reasonably be expected to be independent, and in a 
very short time period the number can be expected to be, to first order, proportional to the 
length of that period.  This is a standard situation where the Poisson distribution is likely to 
apply. 
 
 
(i) Let X denote the number of claims and Y the total cost of all claims.  μ and σ 2 denote 

respectively the mean and variance of the size of any individual claim.  As X follows a 
Poisson distribution, λ is both the mean and the variance of X. 

 
Clearly E(Y | X = n) = nμ and thus E(Y | X) = Xμ.  Therefore the formula E(Y) = 
E(E(Y | X)) gives E(Y) = E(Xμ) = E(X).μ = λμ, and this is the mean of the total cost. 

 
For the variance of the total cost, we use the formula (given in the question) 
Var(Y) = E(Var(Y | X)) + Var(E(Y | X)). 

 
We have Var(Y | X = n) = nσ 2, so Var(Y | X) = Xσ 2.  ∴ E(Var(Y | X)) = E(X).σ 2 = λσ 2. 

 
Also, E(Y | X) = Xμ [see above], so Var(E(Y | X)) = Var(Xμ) = μ2Var(X) = μ2λ. 

 
Therefore Var(Y) = λ(σ 2 + μ2);  this is the variance of the total cost. 

 
 
(ii) (a) For the case of UK motor car insurance, with claims for accident repairs, the 

assumption is reasonable.  The number and geographical and time spreads of 
claims are such that the size of any one claim will be unrelated to the size of 
almost all other claims. 

 
(b) For the case of property damage claims in a particular US city liable to 

hurricanes, the assumption is unreasonable.  It seems likely that there would 
either be hardly any claims (and mostly small and unrelated ones) or, if a 
hurricane did strike, a large number of large (and often inter-related) claims. 

 
 
 



Graduate Diploma Module 1  –  Specimen Question 2 
 
 
(i) Suppose that the random variable U has the continuous uniform distribution on the 

interval (0, 1).  Show that the random variable X = –logU has the standard exponential 
distribution with density function f (x) = exp(–x) on x > 0. 

(4) 
 
(ii) Let g(x) be the density function of X = |Z| where Z has the standard Normal 

distribution, so that g(x) = √(2/π) exp(–x2/2) on x ≥ 0. 
 

Show that exp{x – (x2/2)} takes its maximum value when x = 1.  Deduce that, for 
k = √(2e/π),  k f (x) ≥ g(x) for all x ≥ 0. 

(6) 
 
(iii) Suppose you have a supply of values u1, u2, u3, … from independent random variables 

U1, U2, U3, … respectively, each of which has the distribution of U in part (i).  Using 
the value of k and the inequality k f (x) ≥ g(x) shown in part (ii), describe a rejection 
method for generating values from the distribution of |Z|. 

(6) 
 
(iv) Describe further steps that would lead to the generation of values from a Normal 

distribution with mean μ and variance σ 2. 
(4) 

 
 



Graduate Diploma Module 1  –  Specimen Question 2  –  Solution 
 
 
(i) For x > 0, P(X < x) = P(–logU < x) = P(U > e–x) = 1 – P(U < e–x) = 1 – e–x.  This is the 

cdf of X, so the pdf is the derivative, i.e. e–x as required. 
 
 
(ii) Let h(x) = exp{x – (x2/2)}, so that h'(x) = (1 – x)h(x).  Since h(x) > 0 for all x, its only 

turning point is at x = 1.  This is a maximum (eg note that h'(x) > 0 for x < 1 whereas 
h'(x) < 0 for x > 1).  Plainly this maximum value is √e. 

 
When k = √(2e/π), we have 

 

k f (x) – g(x)  =  √(2e/π).exp(–x) – √(2/π).exp(–x2/2)  =  exp(–x)√(2/π){√e – h(x)}. 
 

But we have seen that h(x) ≤ √e for all x.  So k f (x) ≥ g(x) for all x ≥ 0, as required. 
 
 
(iii) The required rejection method is as follows.  First, use the value u1 to generate a value 

x from the standard exponential distribution by the method shown in part (i).  Then set 
y = ku2exp(–x);  accept x as a value from the distribution of |Z| if y < g(x) = 
√(2/π) exp(–x2/2), otherwise return to the first step, taking the next ui value. 

 
 
(iv) To obtain values from N(μ, σ 2), first generate a value z (note that z ≥ 0) from |Z| as 

described in part (iii).  Now let v be the next (unused) value from the stream Ui.  
Replace z by –z if v < 0.5, otherwise keep the current value of z.  Then μ + σ z is a value 
from the desired N(μ, σ 2) distribution. 

 



Graduate Diploma Module 1  –  Specimen Question 3 
 
 
Suppose that a sequence of n independent Bernoulli trials is carried out, each with success 
probability p.  Let Wi = 1 if the ith trial is a success and Wi = 0 if the ith trial is not a success, 
for i = 1, 2, …, n.  Let X denote the total number of successes.  Write down the expected value 
and variance of Wi.  Hence show that E(X / n) = p and find the variance of X / n. 

(4) 
 
Write Y = arcsin(√(X / n)).  Use a first order Taylor series method to show that, approximately, 
the variance of Y is 1/(4n), whatever the value of p. 

(11) 
 
In the case when n = 4, find the exact distribution of Y. 

(5) 
 



Graduate Diploma Module 1  –  Specimen Question 3  –  Solution 
 
 
Write X = W1 + W2 + … + Wn where the Wi are as defined in the question. 
 
For each i, E(Wi) = [1 × p]  + [0 × (1 – p)] = p and similarly E(Wi

2) = p, so Var(Wi) = p – p2. 
 
So E(X) = np and therefore E(X / n) = p, and Var(X) = n(p – p2) = np(1 – p) and therefore 
Var(X / n) = (1/n2)Var(X) = p(1 – p)/n. 
 
 
 
Consider the Taylor series about p of the function ( ) ( )arcsinf t = t , which begins with 
 

    ( ) ( ) ( ) ( )'f t f p t p f p= + −    with   ( ) 1/ 21 1' .
21

f t
t

−=
−

t   so that  ( ) 1'
2 (1 )

f p
p p

=
−

. 

 
We have, approximately, 
 

( ) ( ) ( ) ( )'f t f p t p f p− = − . 
 
Now taking t as a random variable (T) with mean p, we have, approximately, 
 

( ) ( ) (( ) ( ) ' 0E f T f p f p E T p− = − =) ,  so that ( ) ( )( )E f T f p≈ . 
 
Now squaring both sides of the approximation ( ) ( ) ( ) ( )'f t f p t p f p− = −  and taking 
expectations, we get 
 

( ) ( ) (2 2( ) ( ) . '( )E f T f p E T p f p⎡ ⎤ ⎡− ≈ −⎣ ⎦ ⎣ )2 ⎤
⎦ , 

 

i.e.   ( ) [ ] ( )2Var ( ) '( ) Varf T f p T≈ . 
 

Applying this with T = X / n gives ( ) ( )
( )11 1Var arcsin /

4 1 4
p p

X n
p p n

−
≈ =

− n
, which is 

the required result. 
 
 
 
When n = 4, the possible values taken by Y are arcsin(√(i/4)) for i = 0, 1, 2, 3, 4, which are 0, 
π /6, π /4, π /3 and π /2. 
 
The corresponding probabilities are immediately found from the binomial distribution with 
parameters 4 and p and are respectively as follows (with q denoting 1 – p):  q4, 4pq3, 6p2q2, 
4p3q, p4. 
 



Graduate Diploma Module 1  –  Specimen Question 4 
 
 
(i) Suppose that U has the continuous uniform distribution over the interval [0, 1] and 

that f is a continuous function defined over the same interval.  Explain briefly why 
 

( ) ( )
1

0
( )E f U I f u du≡ = ∫  

 
and 

 

( ) ( )
1 22 2

0
Var ( ) ( )f U f u dσ≡ = −∫ u I . 

(4) 
 
 
(ii) Deduce that 
 

( ) (1 )
2

f U f UE I+ −⎛ ⎞ =⎜ ⎟
⎝ ⎠

, 

 

and give an expression for the variance of ( ) (1 )
2

f U f U+ −  in terms of 2 andσ τ , the 

covariance of ( )f U  and (1 )f U− . 
(6) 

 
 
(iii) A statistics teacher notes that 

1

0
sin( / 2) 2 /x dxπ π=∫ , and decides to illustrate the 

notions of simulation and Monte Carlo methods by using the properties above to get 
an approximate value of 2 /π .  Thus, suppose that {Ui,  i = 1, 2, …} are independent, 
all having the same distribution as U, and, with ( ) sin( / 2)f u uπ= , write 

 
2

1
( )

2

n

i
i

n

f U
J

n
==
∑

    and    
( )

1
( ) (1 )

2

n

i i
i

n

f U f U
K

n
=

+ −
=
∑

. 

 
Show that ( ) ( ) 2 /n nE J E K π= = .  Prove that Var(Kn) is less than Var(Jn).  What is 
the practical implication of these results? 

(10) 
 
 
 



Graduate Diploma Module 1  –  Specimen Question 4  –  Solution 
 
 
(i) For a general random variable X with probability density function g(x), by definition 

( )( ) ( ) ( )E f X f x g x dx= ∫  between appropriate limits.  Here, X is the random variable 

U with density 1 over [0, 1] (and zero elsewhere).  So ( )
1

0
( ) ( )E f U f u du= ∫  which is 

I as defined in the question. 
 

Similarly, as a general result , so here we have ( ) ( )2 2( ) ( ) ( )E f X f x g x dx⎡ ⎤ =⎣ ⎦ ∫
( ) ( )

12

0
( ) ( ) 2E f U f u du⎡ ⎤ =⎣ ⎦ ∫ .  Therefore we have 

 

( ) ( ) ( ){ } ( )
122 2 2

0
Var ( ) ( ) ( ) ( )f U E f U E f U f u du I⎡ ⎤= − =⎣ ⎦ ∫ − . 

 
 
(ii) As U is uniformly distributed over [0, 1], it is clear that 1 – U has the same 

distribution as U.  Therefore 
 

( ) (1 )
2 2 2

f U f U I IE I+ −⎛ ⎞ = + =⎜ ⎟
⎝ ⎠

 

 
and 

 

   ( ) ( ) ({ }( ) (1 ) 1Var Var ( ) Var (1 ) 2Cov ( ), (1 )
2 4

f U f U f U f U f U f U+ −⎛ ⎞ = + − +⎜ ⎟
⎝ ⎠

)−  

 

      { }
2

2 21 2
4 2

σ τσ σ τ +
= + + =  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution continued on next page 
 



(iii) Clearly 
 

( ) ( ) ( )
2

1

1 1 2( ) .2 ( )
2 2 2

n

n i
i

nIE J E f U n E f U I
n n n

2
π=

= = =∑ = =  

 
and similarly 

 

( ) ( ) ( )( ) ( )
1

1 1( ) (1 )
2 2

n

n i i
i

E K E f U E f U nI nI I
n n

2
π=

= + − = + = =∑ . 

 
So ( ) ( ) 2 /n nE J E K π= = , as required. 

 
 

We also have, from work above, 
 

( )
2

Var
2nJ
n

σ
=     and    ( )

2

Var
2nK
n

σ τ+
= . 

 
We need to show that the second of these is less than the first, which requires us to 
show that τ , the covariance of ( )f U  and (1 )f U− , is negative. 

 
We have 

 

( ) ( ) ( ) ( )
22( ) (1 ) ( ) . (1 ) ( ) (1 )E f U f U E f U E f U E f U f Uτ

π
⎛ ⎞= − − − = − − ⎜ ⎟
⎝ ⎠

 

 
and 

 

( )
1

0

(1 )( ) (1 ) sin sin
2 2
u uE f U f U duπ π −⎛ ⎞ ⎛ ⎞− = ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫  

 
 

Use the identity 
( ) (2sin sin cos cos )θ φ θ φ θ φ= − − +  

and note that cos( / 2) 0π =  
 

 
1 1

0 0

1 1cos sin( )
2 2 2 2

u du u duπ π π 1 2
π

⎛ ⎞= − =⎜ ⎟
⎝ ⎠∫ ∫ =  . 

 

Hence  2

1 4τ
π π

= −   which is clearly negative. 

 
Thus, while Jn and Kn both give the value 2 /π  "on average", values of Kn should be 
closer to 2 /π  than values of Jn. 


