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Summary. We consider approximate Bayesian model choice for model selection problems that
involve models whose Fisher information matrices may fail to be invertible along other competing
submodels.Such singular models do not obey the regularity conditions underlying the derivation
of Schwarz’s Bayesian information criterion BIC and the penalty structure in BIC generally does
not reflect the frequentist large sample behaviour of their marginal likelihood. Although large
sample theory for the marginal likelihood of singular models has been developed recently, the
resulting approximations depend on the true parameter value and lead to a paradox of circular
reasoning. Guided by examples such as determining the number of components of mixture
models, the number of factors in latent factor models or the rank in reduced rank regression,
we propose a resolution to this paradox and give a practical extension of BIC for singular model
selection problems.

Keywords: Bayesian information criterion; Factor analysis; Mixture model; Model selection;
Reduced rank regression; Schwarz information criterion; Singular learning theory

1. Introduction

Information criteria are valuable tools for model selection (Burnham and Anderson, 2002;

Claeskens and Hjort, 2008; Konishi and Kitagawa, 2008). At a high level, they fall into two

categories (Yang, 2005; van Erven et al., 2012; Wit et al., 2012). On one side, there are criteria

that target good predictive behaviour of the selected model. For instance, cross-validation-based

scores assess the quality of out-of-sample predictions by splitting available data into test and

training cases, and Akaike’s information criterion AIC provides an estimate of an out-of-sample

prediction (or generalization) error that is justified via asymptotic distribution theory for large

samples (Akaike, 1974). Following a different philosophy that will be the focus of this paper,

the Bayesian information criterion BIC of Schwarz (1978) draws motivation from Bayesian

inference. Schwarz’s criterion aims to capture key features of posterior model uncertainty via

a penalty that is motivated by the large sample properties of the marginal likelihood (which is

also commonly referred to as integrated likelihood or evidence). In a nutshell, under suitable

regularity conditions, a quadratic approximation to the log-likelihood function can be used to

relate the marginal likelihood to a Gaussian integral in which the sample size acts as an inverse

variance. This dependence of the Gaussian integral on the sample size leads to the familiar
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2 M. Drton and M. Plummer

BIC penalty term that, on the log-scale, consists of the product of model dimension and the

logarithm of the sample size.

BIC penalizes model complexity more heavily than predictive criteria such as AIC. From

the frequentist perspective, it has been shown that BIC’s penalty depends on the sample size

in a way that makes the criterion consistent for a wide range of problems. In other words,

when optimizing BIC the probability of selecting a fixed most parsimonious true model tends

to 1 as the sample size tends to ∞ (e.g. Nishii (1984), Haughton and 1988, 1989). However, a

wide range of penalties would yield consistency of a model selection score, and it is instead the

aim of capturing the asymptotic scaling of the marginal likelihood that leads to the familiar

dependence on dimension and log-sample size. Indeed, from a Bayesian point of view, BIC

supplies rather crude but computationally inexpensive proxies to otherwise difficult-to-calculate

posterior model probabilities, which form the basis for Bayesian model choice and averaging;

see Kass and Wasserman (1995), Raftery (1995), DiCiccio et al. (1997), Hoeting et al. (1999) or

Hastie et al. (2009), chapter 7.7.

In this paper, we are concerned with BICs in the context of singular model selection problems,

i.e. problems that involve models with Fisher information matrices that may fail to be invertible.

For example, owing to the breakdown of parameter identifiability, the Fisher information matrix

of a mixture model with three components is singular at a distribution that can be obtained

by mixing only two components. This clearly presents a fundamental challenge for selection

of the number of components. In particular, when the Fisher information matrix is singular,

the log-likelihood function does not admit a large sample approximation by a quadratic form.

Rotnitzky et al. (2000) illustrated some of the resulting difficulties in asymptotic distribution

theory under an assumption of identifiability. Non-identifiability of parameters, as present in the

examples that we shall consider, leads to considerably more complicated scenarios as discussed,

for instance, by Liu and Shao (2003) and Azaïs et al. (2006, 2009). The key obstruction to

justifying BIC is that in singular models there need no longer be a connection between the

Bayesian marginal likelihood and a Gaussian integral. In particular, a parameter count or model

dimension may fail to capture the asymptotic scaling of the marginal likelihood (Watanabe,

2009). We illustrate this fact in the following example.

1.1 Example 1

Suppose that Yn = .Yn1, : : : , Ynn/ is a sample of independent and identically distributed ob-

servations whose unknown distribution is modelled as a mixture of two normal distributions.

Specifically, the data-generating distribution is assumed to be of the form

π.α, µ1, µ2/ :=αN .µ1, 1/+ .1−α/N .µ2, 1/,

where α ∈ [0, 1] is an unknown mixture weight, µ1, µ2 ∈ R are two unknown means and the

variances are known and equal to 1. To exemplify later notation, we write out the likelihood

function of the mixture model M considered, which maps the parameter vector .α, µ1, µ2/ to

P{Yn|π.α, µ1, µ2/, M}=
n
∏

i=1

{αϕ.Yni −µ1/+ .1−α/ϕ.Yni −µ2/}:

Here, ϕ denotes the standard normal density. As a prior for Bayesian inference, consider a

uniform distribution for α, and take µ1 and µ2 to be independent N .0, 16/. Then the marginal

likelihood of model M is

L.M/=
∫

[0,1]×R
2
P{Yn|π.α, µ1, µ2/, M}ϕ.µ1=4/ϕ.µ2=4/d.α, µ1, µ2/:
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Singular Models 3
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Fig. 1. Averages of twice the log-marginal-likelihood ratio for a Gaussian mixture model, least squares line,
simultaneous confidence bands and theory-based slope ( ): (a) data from a two-component mixture;
(b) standard normal data

We now simulate values of the random variable L.M/. For each choice of a sample size

n ∈ {50, 60, : : : , 100}, we generate 200 independent realizations of L.M/, drawing the sample

Yn from the normal mixture π0 given by α=0:4, µ1 =−2 and µ2 =2. Following Neal (1999), we

compute each value of L.M/ by standard Monte Carlo sampling with 107 draws from the prior.

To allow for comparisons across different samples, we consider the marginal likelihood ratio

L0.M/ that is obtained by dividing L.M/ by P.Yn|π0/, which is the likelihood of the sample

under the true distribution. The results are summarized in Fig. 1(a), which plots average values

of 2 log{L0.M/} together with a least squares line relating 2 log{L0.M/} to log.n/. We also

show 90% simultaneous confidence bands and a line with slope determined by large sample

theory. We emphasize that Fig. 1(a)’s horizontal axis has the sample size on the log-scale. The

slope of the least squares line comes out to be −2:98 and is close to the slope of −3 that is

predicted by the parameter count from Schwarz’s BIC.

A different picture emerges, however, when we repeat the simulations changing the data-

generating distribution π0 to the standard normal distribution N .0, 1/; see Fig. 1(b). In this

case, the slope of the least squares line is no longer close to the negated parameter count.

Instead, it is about −1:62. In Section 2, we discuss asymptotic theory that addresses the issue

that the Fisher information matrix of M is singular at the standard normal distribution. For

N .0, 1/ data in this example, the theory predicts a slope of −1:5 (Aoyagi, 2010a). This large

sample line is contained in the simultaneous confidence bands that we give in Fig. 1(b).

As we shall review in Section 2, refined mathematical knowledge about the asymptotic scaling

of the marginal likelihood of singular models has been obtained in recent years. It is desirable

to leverage this knowledge when defining an information criterion that is inspired by Bayesian

methods. However, it is not immediately clear how to cope with the fact that even the most basic

features of the asymptotics for the marginal likelihood depend on the unknown data-generating

distribution. The generalization of BIC that we introduce in this paper resolves this issue by

averaging different approximations in a data-dependent way.
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4 M. Drton and M. Plummer

As conveyed by the above example, the selection of the number of mixture components

constitutes a singular model selection problem. Other important examples of this type include

determining the rank in reduced rank regression, the number of factors in factor analysis or the

number of states in latent class or hidden Markov models. More generally, all the classical hidden

or latent variable models are singular, which expresses itself also in complicated geometry of

the parameter space or set of distributions (Geiger et al., 2001; Drton et al., 2007; Zwiernik and

Smith, 2012; Allman et al., 2015; Gassiat and van Handel, 2014).

Despite the possible disconnect between penalization based on model dimension alone and

the large sample behaviour of Bayesian methods, the standard BIC is a state of the art method

for many singular model selection problems; see for example McLachlan and Peel (2000), section

6.9, Steele and Raftery (2010) and Baudry and Celeux (2015) for mixture models and Lopes and

West (2004) for factor analysis. From the frequentist perspective, BIC is known to be consistent in

many singular settings (Keribin, 2000; Drton et al. (2009), chapter 5.1). However, as mentioned

earlier, consistency can be achieved with many penalization schemes, which would not need to

depend logarithmically on the sample size.

In this paper, we propose a generalization of the BIC that utilizes refined mathematical

information about the marginal likelihood of the statistical models considered: information that

goes beyond mere model dimension. Schwarz’s BIC is Bayesian in the sense that it differs from

the log-marginal-likelihood only by terms that are bounded. The new criterion, sBIC, maintains

this connection to Bayesian model choice also in singular settings. Our sBIC-criterion preserves

consistency properties of BIC and is an honest generalization of the standard criterion in the

sense that sBIC coincides with Schwarz’s BIC when the model is regular. sBIC is designed to

capture the key features of posterior model uncertainty, but our numerical work shows that it

can also lead to improved frequentist model selection properties.

The new criterion is presented in Section 3, which is preceded by a review of the theory that

sBIC is built on (Section 2). This theory was developed over the last decade by Watanabe (2001,

2009). The large sample properties of sBIC are shown in Section 4. We first show consistency and

then clarify the connection to the log-marginal-likelihood. Numerical examples demonstrating

the use of sBIC are given in Sections 5 and 6. The former section focuses on problems from

multivariate analysis, namely, reduced rank regression and factor analysis. The latter section

treats mixture models, where it becomes particularly apparent that the choice of the prior

distribution in each (singular) model has an influence on the form of sBIC—as a reader familiar

with the work of Rousseau and Mengersen (2011) may suspect. We conclude the paper with a

discussion of the strengths and the limitations of the proposed methodology in Section 7.

2. Background

Let Yn = .Yn1, : : : , Ynn/ denote a sample of n independent and identically distributed (IID)

observations, and let {Mi : i ∈ I} be a finite set of candidate models for the distribution of

these observations. For a Bayesian treatment, suppose that we have positive prior probabilities

P.Mi/ for the models and that, in each model Mi, a prior distribution P.πi|Mi/ is specified

for the probability distributions πi ∈ Mi. Write P.Yn|πi, Mi/ for the likelihood of Yn under

data-generating distribution πi from model Mi, and let

L.Mi/ :=P.Yn|Mi/=
∫

Mi

P.Yn|πi, Mi/dP.πi|Mi/ .2:1/

be the marginal likelihood of model Mi. Bayesian model choice is then based on the posterior

model probabilities
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Singular Models 5

P.Mi|Yn/∝P.Mi/L.Mi/, i∈ I:

The probabilities P.Mi|Yn/ can be approximated by various Monte Carlo procedures—see

Friel and Wyse (2012) for a recent review—but practitioners also often turn to computationally

inexpensive proxies that are suggested by large sample theory. These proxies are based on the

asymptotic properties of the sequence of random variables L.Mi/ that are obtained when Yn

is drawn from a data-generating distribution π0 ∈Mi, and we let the sample size n grow.

In practice, a prior distribution P.πi|Mi/ is typically specified by placing a distribution on

the vector of parameters appearing in a parameterization of Mi; recall example 1. So assume

that

Mi ={πi.ωi/ :ωi ∈Ωi} .2:2/

with di-dimensional parameter space Ωi ⊆ R
di , and that P.πi|Mi/ is the transformation of a

distribution P.ωi|Mi/ on Ωi under the map ωi �→πi.ωi/. The marginal likelihood is then the

di-dimensional integral

L.Mi/=
∫

Ωi

P{Yn|πi.ωi/, Mi}dP.ωi|Mi/: .2:3/

Now the observation of Schwarz and other subsequent work is that, under suitable techni-

cal conditions on the model Mi, the parameterization ωi �→πi.ωi/ and the prior distribution

P.ωi|Mi/, it holds for all π0 ∈Mi that

log{L.Mi/}= log{P.Yn|π̂i, Mi/}− di

2
log.n/+Op.1/: .2:4/

Here, P.Yn|π̂i, Mi/ is the maximum of the likelihood function, and Op.1/ stands for a sequence

of remainder terms that is bounded in probability. The first two terms on the right-hand side of

equation (2.4) can be evaluated in statistical practice and may be used as a model score or a proxy

for the logarithm of the marginal likelihood. The resulting Bayesian or Schwarz’s information

criterion for model Mi is

BIC.Mi/= log{P.Yn|π̂i, Mi/}− di

2
log.n/: .2:5/

Briefly put, the large sample behaviour from equation (2.4) relies on the following properties

of regular problems. First, with high probability, the integrand in equation (2.3) is negligibly

small outside a neighbourhood of the maximum likelihood estimator of ωi. Second, in such a

neighbourhood, the log-likelihood function log[P{Yn|πi.ωi}, Mi}] can be approximated by a

negative definite quadratic form, whereas a smooth prior P.ωi|Mi/ is approximately constant.

The integral in equation (2.3) may thus be approximated by the product of P.Yn|π̂i, Mi/ and a

Gaussian integral, in which the inverse covariance matrix equals n times the Fisher information.

This di-dimensional Gaussian integral depends on n via the multiplicative factor n−di=2, and

taking logarithms we arrive at equation (2.4). We remark that this approach also allows for

estimation of the remainder term in equation (2.4), giving a Laplace approximation with error

Op.n−1=2/ as discussed, for instance, in Tierney and Kadane (1986), Haughton (1988), Kass

and Wasserman (1995) or Wasserman (2000).

A large sample quadratic approximation to the log-likelihood function is not possible, how-

ever, when the Fisher information matrix is singular. Consequently, the classical theory that

was alluded to above does not apply to singular models. Indeed, model (2.4) is generally false in

singular models. Nevertheless, asymptotic theory for the marginal likelihood of singular models

has been developed over the last decade, culminating in Watanabe (2009). Indeed, theorem 6.7
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6 M. Drton and M. Plummer

in Watanabe (2009) shows that a wide variety of singular models have the property that, for Yn

drawn from π0 ∈Mi,

log{L.Mi/}= log{P.Yn|π0, Mi/}−λi.π0/ log.n/+{mi.π0/−1} log{log.n/}+Op.1/; .2:6/

see also the introduction to the topic in Drton et al. (2009), chapter 5.1. In this paper, we follow

the terminology of Watanabe, (2009) and refer to the quantity λi.π0/ as the learning coefficient.

However, other terminology such as real log-canonical-threshold or stochastic complexity is

in use. The number mi.π0/ is the multiplicity of the learning coefficient or real log-canonical-

threshold. In contrast with the regular case, it is generally very difficult to estimate the Op.1/

remainder term in equation (2.6). We are not aware of any successful work on higher order

approximations in statistically relevant singular settings.

Remark 1. The theorem giving equation (2.6) is developed under the ‘fundamental conditions

(I) and (II)’ from definitions 6.1 and 6.3 in Watanabe (2009). Although the precise nature of

these conditions is not important for the developments in this paper, we would like to summarize

them briefly. Under conditions (I) and (II), the distributions in Mi share a common support and

have densities with respect to a dominating measure. The parameter space Ωi in equation (2.2)

is compact and defined by real analytic constraints. (An assumption of compactness is needed

only when the set of parameter vectors representing the true distribution {ωi ∈Ωi :π.ωi/=π0}
is not already compact.) Watanabe’s conditions further require that the log-likelihood ratios of

π0 with respect to the distributions π.ωi/ can be bounded by a function that is square integrable

under π0. Moreover, the log-likelihood ratios satisfy a requirement of analyticity that allows for

power series expansions in ωi. Finally, the prior distribution P.ωi|Mi/ has a density that is the

product of a smooth positive function and a non-negative analytic function.

Watanabe’s result applies to models such as reduced rank regression, factor analysis, binomial

mixtures and latent class analysis, which we shall consider in the numerical experiments of

Sections 5 and 6. Via suitable analytic bounds on the log-likelihood ratios, the result can also be

extended to other ‘non-analytic models’, such as mixtures of normal distributions with known

common variance as we considered in example 1 (Watanabe (2009), section 7.8). Although the

case of Gaussian mixtures with unknown variance has not yet been treated explicitly in the

literature, we show experiments with such models in Section 6.

2.1. Example 2

Let M2 be the Gaussian mixture model with i=2 components that we considered in Example 1.

If π0 is a normal distribution N .µ, 1/ then λ2.π0/= 3
4

. If π0 is an honest mixture of two normal

distributions with variance 1 then λ2.π0/= 3
2

. In either case m2.π0/=1. The values can be found

in example 3.1 of Aoyagi (2010a). (The formula for the multiplicity in theorem 3.4 in Aoyagi

(2010a) applies only if r<H , in the notation that is used there. If r =H , the multiplicity is 1, as

confirmed in private communication with Aoyagi.)

Reduced rank regression, factor analysis and latent class analysis are all singular submodels

of an exponential family, which is either the normal or the multinomial family. It follows that

the sequence of likelihood ratios P.Yn|π̂i, Mi/=P.Yn|π0, Mi/ converges in distribution and, in

particular, is bounded in probability (Drton, 2009). In this case, we can plug the maximum

likelihood estimator into the first term of equation (2.6) and obtain that

log{L.Mi/}= log{P.Yn|π̂i, Mi/}−λi.π0/ log.n/+{mi.π0/−1} log{log.n/}+Op.1/: .2:7/
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Singular Models 7

For more complicated models, such as Gaussian mixture models, likelihood ratios can often be

shown to converge in distribution under compactness assumptions on the parameter space; see

for instance Azaïs et al. (2006, 2009) who also reviewed much of the relevant literature. Without

compactness, the log-likelihood ratios in mixture models need not be bounded in probability;

for example, they would be of order Op[log{log.n/}] for Gaussian mixtures (Hartigan, 1985;

Bickel and Chernoff, 1993).

Having estimated the log-likelihood by estimating the unknown data-generating distribution

π0, it seems tempting similarly to estimate the learning coefficient λi.π0/ and its multiplicity

mi.π0/. However, in contrast with the likelihood function, the learning coefficient and multi-

plicity are not continuous functions of π0. Hence, substituting an estimate for π0 is of little

interest as the resulting expression fails to capture the behaviour of the marginal likelihood at

(or near) model singularities. Instead, we shall make the fact from equation (2.7) the point of

departure in the definition of our singular BIC, which is the topic of Section 3.

As in the original work of Schwarz (1978), our general treatment will focus on prior distribu-

tions with smooth densities that are bounded and positive. On a compact set, such a density will

be bounded away from zero. In the analytic settings that were considered in Watanabe (2009),

it then holds that λi.π0/ is a rational number in [0, di=2] and mi.π0/ is an integer in {1, : : : , di}.

However, as mentioned above, priors with densities that are zero in parts of the parameter space

can be accommodated in the framework as long as the prior density vanishes in an ‘analytic

fashion’. In this case, the learning coefficient may depend on the prior P.ωi|Mi/ in important

ways. In particular, if the prior has a density that is zero at model singularities then λi.π0/ could

exceed di=2; compare the discussion of Jeffreys’s prior in theorem 7.4 in Watanabe (2009). We

shall revisit the role of the prior distribution in experiments with mixture models in Sections 6.2

and 6.3.

2.2. Example 3

Reduced rank regression is multivariate linear regression subject to a rank constraint on the

matrix of regression coefficients (Reinsel and Velu, 1998). Suppose that we observe n independent

copies of a partitioned zero-mean Gaussian random vector Y = .YR, YC/, where YR ∈ R
N and

YC ∈ R
M . Keeping only with the most essential structure, assume that the covariance matrix

of YC and the conditional covariance matrix of YR given YC are both the identity matrix. The

reduced rank regression model Mi that is associated with an integer i�0 then postulates that

the N ×M matrix π in the conditional expectation E[YR|YC]=πYC has rank at most i.

In a Bayesian treatment, consider the parameterization π=ωi2ωi1, with smooth and positive

prior densities for ωi2 ∈ R
N×i and ωi1 ∈ R

i×M . Note that, whereas the matrix π is in one-to-

one correspondence with the joint distribution of Y , this is not true for the pair of matrices

ωi = .ωi1, ωi2/ that is used to parameterize the model. For this set-up, Aoyagi and Watanabe

(2005) derived the learning coefficients λi.π0/ and their multiplicities mi.π0/, where the true

data-generating distribution is given by an N ×M matrix π0 of rank j � i. In particular, λi.π0/

and mi.π0/ depend on π0 only through the true rank j.

For a concrete instance, take N = 5 and M = 3. Then the values of λij :=λi.π0/ are listed in

Table 1, and the multiplicity mi.π0/ = 1 unless i = 3 and j = 0 in which case mi.π0/ = 2. Note

that the table entries for j = i are equal to dim.Mi/=2, where dim.Mi/ = i.N + M − i/ is the

dimension of Mi, which can be identified with the set of N × M matrices of rank at most i.

The dimension is also the maximal rank of the Jacobian of the map .ωi1, ωi2/ �→ωi2ωi1. The

singularity issues that were addressed in Watanabe’s theory arise at points where the Jacobian of

the parameterization fails to have maximal rank. These have rank.ωi2ωi1/< i and thus define a
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8 M. Drton and M. Plummer

Table 1. Learning coefficients for reduced rank
regression (five responses, three covariates)†

i Coefficients for the following values of j:

j =0 j =1 j =2 j =3

0 0
1 3=2 7=2
2 3 9=2 6
3 9=2 11=2 13=2 15=2

†Model postulates rank i; the true rank is j.

distribution that also belongs to a submodel Mj ⊂Mi given by a lower rank j<i. This presents

a challenge for model selection, which here amounts to selection of an appropriate rank.

Although the regularity conditions in its derivation are not met, it is common practice to

apply the standard BIC for selection of the rank. In doing so, one typically takes di =dim.Mi/

in equation (2.5). Simulation studies on rank selection have shown that this criterion has a

tendency to favour overly small ranks; for a recent example see Cheng and Phillips (2012). The

quoted values of λi.π0/ give a theoretical explanation for this empirical phenomenon, as the use

of dimension in BIC leads to overpenalization of models that contain the true data-generating

distribution but are not minimal in that regard.

In other models, determining learning coefficients can be a challenging problem, but progress

has been made. For some of the examples that have been treated, we refer the reader to Aoyagi

(2010a,b, 2009), Drton et al. (2016), Rusakov and Geiger (2005), Watanabe and Amari (2003),

Watanabe and Watanabe (2007), Yamazaki and Watanabe (2003, 2004, 2005) and Zwiernik

(2011). The use of techniques from computational algebra and combinatorics was emphasized

in Lin (2011); see also Arnol’d et al. (1988) and Vasil’ev (1979).

Progress in large sample theory, however, does not readily translate into practical statistical

methodology because we face the obstacle that the learning coefficients depend on the unknown

data-generating distribution π0, as indicated in our notation in equation (2.7). For instance, for

the problem of selecting the rank in reduced rank regression (example 2), the Bayesian measure

of model complexity that is given by the learning coefficient and its multiplicity depends on the

rank that we wish to determine in the first place; recall also example 1 that is about a mixture

model. It is for this reason that there is currently no statistical method that takes advantage of

theoretical knowledge about the values of learning coefficients. In the remainder of this paper,

we propose a solution for how to overcome the problem of circular reasoning and give a practical

extension of BIC to singular models.

3. New Bayesian information criterion for singular models

3.1. Averaging approximations

As previously stated, our point of departure is the large sample result from equation (2.7). If the

learning coefficient λi.π0/ and its multiplicity mi.π0/ that appear in this equation were known,

then we could directly adopt the ideas in Schwarz (1978), omit the remainder term in equation

(2.7) and define a proxy for the marginal likelihood L.Mi/ as
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Singular Models 9

L′
π0

.Mi/ :=P.Yn|π̂i, Mi/
log.n/mi.π0/−1

nλi.π0/
: .3:1/

However, in practice, λi.π0/ and mi.π0/ are unknown. We thus propose to apply standard

Bayesian thinking and to average the different possible approximations L′
π0

.Mi/ from expression

(3.1) by assigning a probability measure Qi to the distributions in model Mi. In other words,

we eliminate the unknown distribution π0 by marginalization and compute an approximation

to L.Mi/ as

L′
Qi

.Mi/ :=
∫

Mi

L′
π0

.Mi/dQi.π0/: .3:2/

The crux of the matter now becomes choosing an appropriate probability measure Qi.

Remark 2. Before discussing particular choices for Qi, we stress that any choice for Qi reduces

to Schwarz’s criterion in the regular case. Here, regularity refers to the setting in which model

Mi with parameterization ωi �→πi.ωi/ has a Fisher information matrix that is invertible at all

ωi in the parameter space Ωi. For a model with di parameters, it then holds that λi.π0/=di=2

and mi.π0/=1 for all data-generating distributions π0 ∈Mi. Hence, L′
π0

.Mi/=exp{BIC.Mi/}
for all π0 ∈Mi. As the integrand in expression (3.2) is constant we have

log{L′
Qi

.Mi/}=BIC.Mi/

irrespectively of the choice of Qi.

Returning to the singular case, one possible candidate for Qi is P.π0|Mi, Yn/: the posterior

distribution in Mi. Under this distribution, however, the singular models that are encountered in

practice have the learning coefficient λi.π0/ almost surely equal to dim.Mi/=2 with multiplicity

mi.π0/=1; recall example 2. (We assume that the set Mi corresponds to a subset of Euclidean

space with well-defined dimension.) We obtain that

log{L′
Qi

.Mi/}= log{P.Yn|π̂i, Mi/}− dim.Mi/

2
log.n/,

which is the usual BIC, albeit with the possibility that dim.Mi/<di, where di is the dimension

of the parameter space Ωi when Mi is presented as in equation (2.2). From a pragmatic point of

view, this choice of Qi is not attractive as it merely recovers the adjustment from di to dim.Mi/

that is standard practice when applying Schwarz’s BIC to singular models. More importantly,

however, averaging with respect to the posterior distribution P.π0|Mi, Yn/ involves conditioning

on the single model Mi, which clearly ignores the model uncertainty that is inherent to model

selection problems.

In most practical problems, the finite set of models {Mi : i∈ I} has interesting structure with

respect to the partial order given by inclusion. (In the examples that we consider in this paper

the order is always a total order. For an example where this is not so, see Drton et al. (2016).)

For notational convenience, we define the poset structure on the index set I and write i
j when

Mi ⊆Mj. Instead of conditioning on a single model, we then advocate the use of the posterior

distribution

Qi.π0/ :=P.π0|{M :M⊆Mi}, Yn/=

∑

j
i

P.π0|Mj, Yn/P.Mj|Yn/

∑

j
i

P.Mj|Yn/
.3:3/
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10 M. Drton and M. Plummer

which is obtained by conditioning on the family of all submodels of Mi. Intuitively, the proposed

choice of Qi introduces the knowledge that the data-generating distribution π0 is in Mi all

the while capturing remaining posterior uncertainty with respect to submodels of Mi. This

does not yet escape from the problem of circular reasoning, since expression (3.3) involves the

posterior probabilities P.Mj|Yn/ that we are trying to approximate. However, this problem can

be overcome as we argue in Section 3.2.

For simpler notation, let L′.Mi/ := L′
Qi

.Mi/ when Qi is chosen according to our proposal

from expression (3.3). We obtain from expressions (3.2) and (3.3) that

L′.Mi/= 1
∑

j
iP.Mj|Yn/

∑

j
i

L′
ijP.Mj|Yn/, .3:4/

with

L′
ij =P.Yn|π̂i, Mi/Λij.Yn/ .3:5/

and

Λij.Yn/=
∫

Mj

log.n/mi.π0/−1

nλi.π0/
dP.π0|Mj, Yn/: .3:6/

The integral Λij.Yn/ is the expectation of a term measuring the complexity of model Mi under

the posterior distribution given the submodelMj. The integration problem in equation (3.6) may

seem complicated at this point but, in fact, for the statistical problems that we have in mind, the

computation of integral (3.6) is trivial because the integrand is (almost surely) constant. Indeed,

all singular model selection problems that we know satisfy the following condition.

For any i∈ I and j 
 i, there are two constants λij and mij such that

λi.π0/=λij and mi.π0/=mij .3:7/

for all π0 in a set Aij ⊆Mj with P.Aij|Mj, Yn/=1.

With such generic values for learning coefficient and multiplicity, the integral Λij.Yn/ does

not depend on the data Yn and equals

Λij.Yn/= log.n/mij−1

nλij
:

In this case,

L′
ij =P.Yn|π̂i, Mi/

log.n/mij−1

nλij
.3:8/

becomes easy to evaluate in statistical practice.

3.1.1. Example 4

Consider again the reduced rank regression model from example 3. As mentioned, Aoyagi

and Watanabe (2005) have shown that the learning coefficient λi.π0/ and its multiplicity mi.π0/

depend only on the rank j that is associated with π0. Hence, for any pair j � i, there are constants

λij and mij such that condition (3.7) holds for all π0 in Mj \Mj−1. The exceptional set Mj−1

corresponds to the matrices of rank at most j −1 and is a null set among the matrices of rank

at most j. In Table 1, we listed numerical values of λij for the special case of N = 5 responses

and M =3 covariates.
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Singular Models 11

The fact that condition (3.7) holds for reduced rank regression would also be clear if we

did not know explicit formulae for the learning coefficients and their multiplicities. Consider

model Mi, and let j � i. Our claim is then that λi.π0/ and mi.π0/ are functions of π0 that

are constant on a set that has probability 1 under P.π0|Mj, Yn/. The pair .λi.π0/, mi.π0// is

determined by the asymptotics of a Laplace integral. Using that Mi is a submodel of the regular

family of all Gaussian distributions and that Mi is parameterized by a polynomial map, the

phase function of the Laplace integral can be taken to be a polynomial; compare for example,

section 2 in Drton et al. (2016) or lemma 1 in Aoyagi and Watanabe (2005). Moreover, this

polynomial has coefficients that are polynomial functions of π0. When making this statement,

we identify π0 with the N ×M matrix of regression coefficients. By the theory that is discussed

in Watanabe (2009), if π0 = π0.ωj/ ∈ Mj then there are generic values λij and mij such that

.λi.π0/, mi.π0// �= .λij, mij/ if and only if ωj satisfies a polynomial equation gij.ωj/ = 0 that

does not hold for all points in Ωj. Here, Ωj =R
N×i ×R

i×M is the parameter space of Mj. Since

gij is a non-zero polynomial, its zero set has measure zero by the lemma in Okamoto (1973).

Consequently, .λi.π0/, mi.π0//= .λij, mij/ holds almost surely under P.π0|Mj, Yn/.

The reasoning just given applies verbatim to the factor analysis model that is treated later, and

to models for categorical data such as latent class models or binomial mixtures. For mixtures of

Gaussians some additional insights are needed to arrive at a polynomial set-up but condition

(3.7) still holds (section 7.8 in Watanabe (2009)). We note that the model from examples 1 and

2 has λ21 = 3
4

and λ22 = 3
2

. Outside the algebraic realm, it is more difficult to make a general

statement about generic values of learning coefficients. Nonetheless, we expect condition (3.7) to

hold in all model selection problems of practical interest; compare also remark 1.8 in Watanabe

(2009).

3.2. Singular Bayesian information criterion

Even if we can evaluate all the integrated approximations L′
ij for j 
 i in the generic situation

from equation (3.8), our proposed approximation L′.Mi/ remains impractical because it is a

weighted average with the weights being the posterior model probabilities P.Mj|Yn/ that we

seek to approximate in the first place. To make this fact more transparent, we rewrite equation

(3.4) by using that P.Mj|Yn/∝L.Mj/P.Mj/, which gives

L′.Mi/= 1
∑

j
i

L.Mj/P.Mj/

∑

j
i

L′
ij L.Mj/P.Mj/: .3:9/

We see explicitly that L′.Mi/, which is the supposed proxy to marginal likelihood, is a function

of the actual marginal likelihood L.Mi/ as well as the marginal likelihood L.Mj/ of any

submodel indexed by j ≺ i. Of course, there would hardly be any interest in a proxy L′.Mi/

once the marginal likelihood L.Mi/ has been computed.

This said, equation (3.9) also leads to a way out of this dilemma. Observe that in equation

(3.9), the marginal likelihood for model Mi appears twice: first in approximation on the left-

hand side and then as an exact value on the right-hand side when considering summation index

j = i. This motivates building a ‘fix point equation system’ by replacing each marginal likelihood

L.Mj/ on the right-hand side of equation (3.9) by its approximation L′.Mj/. We arrive at the

equation system

L′.Mi/= 1
∑

j
i

L′.Mj/P.Mj/

∑

j
i

L′
ij L′.Mj/P.Mj/, i∈ I, .3:10/
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12 M. Drton and M. Plummer

where the L′
ij and the P.Mj/ are known constants and the desired marginal likelihood ap-

proximations L′.Mi/ are the unknowns that we wish to solve for. We emphasize that equation

(3.10) is not mathematically deduced from equation (3.9); it is simply an equation system that we

heuristically motivated. Now, if we can solve the non-linear equation system in expression (3.10)

and obtain a solution with all L′.Mi/> 0 then we have computed a practical approximation to

the marginal likelihood of each considered model Mi, i∈ I.

Our next observation is that equations (3.10) indeed have a positive solution and that this

solution is unique. To show this, we clear denominators and consider the polynomial equation

system
∑

j
i

{L′.Mi/−L′
ij}L′.Mj/P.Mj/=0, i∈ I: .3:11/

Proposition 1. The equation system in expression (3.11) has a unique solution with all un-

knowns L′.Mi/> 0.

Proof. Let i be any minimal element of the poset I. Then j = i is the only choice for the index

j, and the equation from expression (3.11) reads

{L′.Mi/−L′
ii}L′.Mi/P.Mi/=0:

With P.Mi/> 0, the equation has the unique positive solution

L′.Mi/=L′
ii > 0,

which coincides with the exponential of the usual BIC for model Mi.

Consider now a non-minimal index i∈ I. Proceeding by induction, assume that positive so-

lutions L′.Mj/ have been computed for all j ≺ i, where j ≺ i if Mj �Mi. Then L′.Mi/ solves

the quadratic equation

L′.Mi/
2 +bi L

′.Mi/− ci =0 .3:12/

with

bi =−L′
ii +

∑

j≺i

L′.Mj/
P.Mj/

P.Mi/
, .3:13/

ci =
∑

j≺i

L′
ij L′.Mj/

P.Mj/

P.Mi/
: .3:14/

Since ci > 0 by the induction hypothesis, equation (3.12) has the unique positive solution

L′.Mi/= 1
2
{−bi +

√
.b2

i +4ci/}: .3:15/

On the basis of proposition 1, we make the following definition in which we consider the

equation system from expression (3.11) under the default of a uniform prior on models, i.e.

P.Mi/=1=|I| for i∈ I.

Definition 1. The singular BIC for model Mi is

sBIC.Mi/= log{L′.Mi/},

where .L′.Mi/ : i∈ I/ is the unique solution to the equation system
∑

j
i

{L′.Mi/−L′
ij}L′.Mj/=0, i∈ I, .3:16/
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Singular Models 13

that has all components positive.

According to expression (3.9), sBIC.Mi/ is the logarithm of a weighted average of the approx-

imations L′
ij, with the weights depending on the data. As discussed in Section 2, for priors with

smooth and positive densities it holds that λi.π0/�dim.Mi/=2 and mi.π0/�1 for all π0 ∈Mi.

Assuming that n�3, this implies that

nλi.π0/

log.n/mi.π0/−1
�ndim.Mi/=2:

Consequently, the singular BIC is of the form

sBIC.Mi/= log{P.Yn|π̂i, Mi/}−penalty.Mi/,

where penalty.Mi/ is a data-dependent penalty that satisfies

penalty.Mi/�dim.Mi/=2 log.n/

and thus is milder than that in the usual BIC.

Remark 3. Although we envision that the use of a uniform prior on models in definition 1 is

reasonable for many applications, deviations from this default can be of interest; compare, for

instance, Nobile (2005) who discussed priors for the number of components in mixture models.

Via equation system (3.11), a non-uniform prior on models can be readily incorporated in the

definition of the singular BIC. Later large sample results would not be affected.

Remark 4. sBIC defined by equation (3.16) is a function of the approximations L′
ij from

equation (3.8), which in turn depend only on the maxima of the likelihood functions and the

numbers λij and mij. In our treatment so far the λij are learning coefficients and the mij

their multiplicities; recall condition (3.7). However, as we shall see for applications discussed in

Section 6, interesting versions of sBIC also arise when setting the λij and mij equal to bounds

on learning coefficients and multiplicities respectively.

4. Large sample properties

As mentioned in Section 1, Schwarz’s BIC with its dimension-based penalty has been shown to

be consistent in many settings, including many singular model selection problems. Theorem 1 in

this section asserts similar consistency for the singular BIC from definition 1. We then proceed

to show that sBIC has the properties that we set out to obtain. Indeed, by proposition 3, Section

4.2, the data-dependent penalty in sBIC successfully adapts to the data-generating distribution,

meaning that in large samples the penalty that sBIC assigns to a true model Mi agrees with

the penalty that is obtained from the (in practice unknown) learning coefficient λi.π0/ and its

multiplicity mi.π0/. As stated in theorem 2, it follows that sBIC is indeed Bayesian in the sense

that it deviates from the log-marginal-likelihood by terms that are bounded in probability.

4.1. Set-up and assumptions

We consider a finite set of models {Mi : i ∈ I} that is closed under intersection. Fix a data-

generating distribution π0 ∈∪i∈I Mi. A model Mi is true if π0 ∈Mi. Otherwise, Mi is false.

Since the set of models is closed under intersection, there is a unique smallest true model, which

we denote by Mi0 for index i0 ∈ I.
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14 M. Drton and M. Plummer

Throughout this section, we assume that Watanabe’s result from equation (2.6) holds with

generic learning coefficients λij and multiplicities mij as in condition (3.7). Then sBIC.Mi/ is

computed from the approximations in equation (3.8), where

nλij

log.n/mij−1
, .4:1/

acts as a measure of complexity of model Mi. We refer to this measure of complexity as the

(generic) Bayes complexity of Mi along its submodel Mj. Let ‘�’ denote the lexicographic order

on R
2, i.e. .x1, y1/� .x2, y2/ if x1 <x2 or if x1 =x2 and y1 �y2. Then two Bayes complexities are

ordered as

nλ1

log.n/m1−1
�

nλ2

log.n/m2−1

for all large n if and only if .λ1, −m1/� .λ2, −m2/.

To present a general result, we make the following assumptions about the behaviour of likeli-

hood ratios and the learning coefficients and their multiplicities, under a fixed data-generating

distribution π0.

Assumption 1. For any two true models Mi and Mk, the sequence of likelihood ratios

P.Yn|π̂k, Mk/

P.Yn|π̂i, Mi/

is bounded in probability as n→∞.

Assumption 2. For any pair of a true model Mi and a false model Mk, there is a constant

δik > 0 such that, with probability tending to 1 as n→∞, we have that

P.Yn|π̂k, Mk/

P.Yn|π̂i, Mi/
� exp.−δikn/:

Assumption 3. The generic Bayes complexities are increasing with model size in the sense

that, for any model indices i, k ∈ I and submodel indices j, l∈ I, we have that

.λij, −mij/<.λkj, −mkj/ if j 
 i≺k,

and

.λil, −mil/<.λij, −mij/ if l≺ j 
 i:

The reader is accustomed with assumptions 1 and 2 from any treatment of consistency of

Schwarz’s BIC. Assumption 1, which is the more subtle of the two conditions, holds in prob-

lems that involve possibly singular submodels of exponential families and other well-behaved

models. In such problems, the likelihood ratios in assumption 1 typically converge to a limiting

distribution (Drton, 2009). Examples are Gaussian models such as reduced rank regression and

factor analysis, but also latent class and other models for categorical data. As also mentioned

when discussing equation (2.7), the sequence of likelihood ratios for mixture models is typi-

cally bounded in probability when the parameter space is compact; without compactness the

sequence need not be bounded. For Gaussian mixtures, for instance, the log-likelihood ratios

could be of the same log{log.n/} order that the multiplicities mi.π0/ have an effect on (Hartigan,

1985; Bickel and Chernoff, 1993).
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Singular Models 15

The first set of inequalities in assumption 3 pertains to a fixed (generic) data-generating

distribution in Mj and makes the natural requirement that, among any two true models Mi and

Mk, the larger model, which is taken to be Mk, has the larger Bayes complexity. The second set

of inequalities in assumption 3 requires that the Bayes complexity of a fixed model Mi decreases

when the data-generating distribution is moved from a generic member of a submodel Mj to

a generic member of Ml � Mj. Indeed, the parameters of singular models are typically ‘less

identifiable’ at special distributions that correspond to smaller submodels, and the second set

of inequalities quantifies such a property. The inequalities from assumption 3 hold in all the

aforementioned examples for which learning coefficients have been computed; in particular, the

assumption holds for the applications that we shall treat later including reduced rank regression

from example 2.

4.2. Consistency

Our first result clarifies that the singular BIC selects the smallest true model in the large sample

limit. We emphasize that we fix a data-generating distribution π0 and then consider large sample

limits.

Theorem 1. Let Mi0 be the smallest true model, and let M{̂ be the model selected by maxi-

mizing the singular BIC, i.e.

{̂=arg max
i∈I

sBIC.Mi/:

Under assumptions 1–3, the probability that {̂= i0 tends to 1 as n→∞.

Remark 5. The consistency result in theorem 1 does not rely on the λij being learning

coefficients. Indeed, consistency holds for any version of sBIC that is based on numbers λij and

mij that satisfy assumption 3. We shall explore this in the applications in Section 6, where λij

and mij will be bounds on learning coefficients and their multiplicities respectively; recall also

remark 4.

Since we are concerned with a finite set of models {Mi : i∈I}, the consistency result in theorem

1 can be established by pairwise comparisons. More precisely, it suffices to show that

(a) the singular BIC of any true model is asymptotically larger than that of any false model,

and

(b) the singular BIC of a true model can be asymptotically maximal only if the model is the

smallest true model.

The comparisons (a) and (b) are addressed in propositions 2 and 3 respectively. Throughout,

.L′.Mi/ : i ∈ I/ refers to the unique positive solution of equations (3.16), i.e. log{L′.Mi/} =
sBIC.Mi/.

Proposition 2. Under assumption 2, if model Mi is true and model Mk is false, then the

probability that sBIC.Mi/> sBIC.Mk/ tends to 1 as n→∞.

Proof. Fix an index j 
 i and a second index l
k. Since Mk is false, assumption 2 implies that

the ratio L′
kl=L′

ij converges to 0 in probability as n→∞ i.e. L′
kl =op.L′

ij/. Since j was arbitrary,

L′
kl =op.L′

i min/, where

L′
i min =min{L′

ij : j 
 i};

note that for fixed i and varying j the approximations L′
ij share the likelihood term and differ

only in the learning coefficients or their multiplicities.
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16 M. Drton and M. Plummer

According to expression (3.10), L′.Mk/ is a weighted average of the terms L′
kl with l
k. We

obtain that

L′.Mk/�max{L′
kl : l
k}=op.L′

i min/: .4:2/

Similarly, L′.Mi/ is a weighted average of the L′
ij, j 
 i, and it thus holds that

L′.Mi/�L′
i min > 0: .4:3/

We conclude that

L′.Mk/=op{L′.Mi/}: .4:4/

It follows that L′.Mi/>L′.Mk/ with probability tending to 1 as n→∞, which yields the claim

because sBIC.Mi/= log{L′.Mi/}.

Proposition 3. Let Mi be a true model. Then, under assumptions 1–3,

sBIC.Mi/= log.L′
ii0

/+op.1/,

and thus for all i≻ i0, with probability tending to 1 as n→∞,

sBIC.Mi/< sBIC.Mi0/:

Proof. First note that under assumption 3 the second assertion is a straightforward conse-

quence of the first; compare expression (4.8) below. By exponentiating, the first assertion is seen

to be equivalent to

L′.Mi/=L′
ii0

{1+op.1/}, i� i0:

We shall argue by induction on i.

To establish the base for the induction, consider the smallest true model, i.e. i= i0. Let j ≺ i0.

Then we know from equation (4.4) that L′.Mj/ = op{L′.Mi0/}. Using the exponentially fast

decay of the ratio in assumption 2, the arguments in the proof of proposition 2 also yield

that L′.Mj/f.n/=op{L′.Mi0/} for any polynomial f.n/. Since L′
i0j=L′

i0 min is a deterministic

function that grows at most polynomially with n, and since L′
i0 min � L′.Mi0/ according to

inequality (4.3), we have

L′
i0j L′.Mj/=op{L′.Mi0/2}: .4:5/

Applying these observations to the coefficients bi0 and ci0 from expressions (3.13) and (3.14),

we obtain that ci0 =op{L′.Mi0/2} and bi0 +L′
i0i0

=op{L′.Mi0/}. From the quadratic equation

defining L′.Mi0/, we deduce that

L′.Mi0/2 −L′
i0i0

L′.Mi0/=op{L′.Mi0/2}: .4:6/

Hence, the equation’s positive solution satisfies our claim, namely

L′.Mi0/=L′
i0i0

{1+op.1/}: .4:7/

For the induction step, assume that the claim is true for proper submodels of Mi, i.e.

L′.Mk/=L′
ki0

{1+op.1/}, i0 
k ≺ i:

Further note that arguing similarly as for i= i0, the contributions of false models to the coeffi-
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Singular Models 17

cients bi and ci from expressions (3.13) and (3.14) are seen to negligible. We thus have

bi =−L′
ii +

{

∑

i0
j≺i

L′.Mj/

}

{1+op.1/}=−L′
ii +

(

∑

i0
j≺i

L′
ji0

)

{1+op.1/}

and

ci =
{

∑

i0
j≺i

L′
ijL′.Mj/

}

{1+op.1/}=
(

∑

i0
j≺i

L′
ijL′

ji0

)

{1+op.1/}:

By assumptions 1 and 3,

L′
ki0

=op.L′
i0i0

/, i0 
k ≺ i, .4:8/

and also

L′
ij =op.L′

ii0
/, i0 
 j 
 i:

We obtain that

bi =−L′
ii +L′

i0i0
{1+op.1/}=L′

i0i0
{1+op.1/}

and

ci =L′
ii0

L′
i0i0

{1+op.1/}:

Consequently,

L′.Mi/= 1
2
{−bi +

√
.b2

i +4ci/}

= 1
2
{−L′

i0i0
+√

.L′
i0i0

2 +4L′
ii0

L′
i0i0

/}{1+op.1/}

= 1
2

[−L′
i0i0

+√
{L′

i0i0
2 +4L′

ii0
L′

i0i0
+ .2L′

ii0
/2}]{1+op.1/},

where the last equality follows from L′
ii0

= op.L′
i0i0

/. However, this is what was to be shown

because

1
2

[−L′
i0i0

+√
{.L′

i0i0
/2 +4L′

ii0
L′

i0i0
+ .2L′

ii0
/2}]=L′

ii0
:

Remark 6. Although we do not pursue this here, it would be interesting to establish further

consistency properties for sBIC. For instance, one could seek to adapt the results in Gassiat and

van Handel (2013) to give strong consistency results for sBIC. Gassiat and van Handel (2013)

considered general information criteria for order selection, i.e. for problems in which the set of

models is totally ordered by inclusion (as in mixture modelling or factor analysis). No upper

bound on the number of such models was assumed in their work.

4.3. Connection to marginal likelihood

Under assumption 2, the marginal likelihood of a false model is with high probability exponen-

tially smaller than that of any true model. The frequentist large sample behaviour of Bayesian

model selection procedures is thus primarily dictated by the asymptotics of the marginal likeli-

hood integrals of true models.

As pointed out in Section 3, the usual BIC from equation (2.5) with penalty depending

solely on model dimension generally does not reflect the asymptotic behaviour of the marginal
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18 M. Drton and M. Plummer

likelihood of a true model that is singular, which is given by equation (3.1). Consequently, as

the sample size increases, the Bayes factor that is obtained by forming the ratio of the marginal

likelihood integrals for two true models may increase or decrease at a rate that is different

from the rate for an approximate Bayes factor formed by exponentiating the difference of the

two respective BIC-scores. Hence, there is generally nothing Bayesian about the usual BIC in

singular model selection problems. In contrast, the new singular BIC is connected to the large

sample behaviour of the log-marginal likelihood.

Theorem 2. Let Mi be a true model, let Mi0 be the smallest true model and let π0 be a generic

distribution in Mi0 . Then, under assumptions 1–3, the marginal likelihood of Mi satisfies

log{L.Mi/}= sBIC.Mi/+Op.1/:

Proof. By proposition 3 and equation (3.8),

sBIC.Mi/= log.L′
ii0

/+op.1/

= log{P.Yn|π̂i, Mi/}−λii0 log.n/+ .mii0 −1/ log{log.n/}+op.1/:

By condition (3.7),

λi.π0/=λii0 ,

mi.π0/=mii0 :

The claim thus follows from equation (2.7), which in turn follows from Watanabe’s result (2.6)

and assumption 1.

5. Applications in multivariate analysis

We apply sBIC to two singular model selection problems arising in multivariate analysis. First,

we consider the problem of selecting the rank of the matrix of regression coefficients in reduced

rank regression and perform a simulation study that illustrates consistency properties. Second,

we treat the problem of selecting the number of factors in factor analysis and work with a well-

known data set to show how sBIC can lead to an improved assessment of model uncertainty.

For a third application of sBIC in multivariate analysis, we point the reader to Drton et al.

(2016) who treat Gaussian latent forest models with similar findings to those for the examples

that we report on here.

5.1. Rank selection

We take up the setting of reduced rank regression from example 3 and Aoyagi and Watanabe

(2005). We consider a scenario with N = 10 responses and M = 15 covariates. We randomly

generate an N × M matrix of regression coefficients π of fixed rank 5. More precisely, we fix

the signal strength by fixing the non-zero singular values of π to be 1.2, 1.0, 0.8, 0.6 and 0.4.

The matrix π is then obtained by drawing the left and the right singular vectors according to

the Haar measures on the two relevant Stiefel manifolds. Given π, we generate n IID normal

random vectors according to the reduced rank regression model, as specified in example 3. Rank

estimates are then obtained by maximizing Schwarz’s BIC or the new sBIC. For each value of

n, we run 200 simulations with varying π.

In our simulations, we also consider the ‘widely applicable Bayesian information criterion’

WBIC of Watanabe (2013). The point of departure in the derivation of this criterion is the fact
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Singular Models 19

that the marginal likelihood can be computed by thermodynamic integration; see also Friel and

Pettitt (2008). Watanabe then analyses the large sample properties of the mean value obtained

by applying the mean value theorem to the thermodynamic integral. The analysis shows that,

for many models and sufficiently large sample size n, the temperature at which the mean value

arises can be approximated by log.n/. We computed WBIC for reduced rank regression by using

a Metropolis–Hastings sampler for which we adapt the computer code that is available on Sumio

Watanabe’s Web site http://watanabe-www.math.dis.titech.ac.jp/users/swat

anab/wbic2012e.html.

We would like to stress that WBIC is not a direct competitor to our sBIC. WBIC does not use

or require knowledge of the learning coefficients, and its computation involves integration as

opposed to the maximization in sBIC. Another important difference is that WBIC involves an

explicit choice of a prior on model parameters, whereas sBIC depends on the prior only through

learning coefficients. The prior distribution in the code that we use for WBIC has the entries of

the two matrices ωi1 and ωi2 IID normal with mean 0 and standard deviation 10. We tuned the

standard deviations for the normal distributions used for proposals in a random walk to 0.015.

Running the sampler for 10000 steps after 1000 steps of burn-in gave average acceptance rates

that remained in the range from 0.1 to 0.9.

The results of the simulations are shown in Fig. 2, in which the new sBIC is seen to have

good rank selection properties in finite samples. For instance, for a sample size of n=300, sBIC

identifies the true rank 5 in the vast majority of cases whereas the usual BIC selects a rank of

3 or 4 in virtually all cases. At n = 1000, BIC and sBIC are perfect, with the exception of two

cases in which sBIC selects rank 6 and two cases in which BIC selects rank 4. The behaviour of
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Fig. 2. Frequencies of rank estimates in reduced rank regression by using Schwarz’s BIC ( ), WBIC ( )
and sBIC ( ) (results from 200 simulations with 10 � 15 matrices of true rank 5): (a) n D 50; (b) n D 100; (c)
nD200; (d) nD300; (e) nD500; (f) nD1000
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20 M. Drton and M. Plummer

the implemented version of WBIC is somewhat different with the ranks selected having greater

variance.

Our main conclusion is that sBIC yields an improvement over the standard dimension-based

BIC in terms of frequentist rank selection properties. In this simulation study, sBIC also per-

forms well compared with WBIC but the rank selection properties of WBIC could certainly

be improved by tuning the prior distributions involved to the problem at hand, as opposed

to employing the defaults from the computer code that we applied. Our conclusion from the

comparison to WBIC is simply that sBIC can achieve state of the art performance in rank

selection.

5.2. Factor analysis

Lopes and West (2004), section 6.3, fitted factor analysis models to data Yn concerning changes

in the exchange rates of six currencies relative to the British pound. The sample size is n=143.

We write Mi for the factor analysis model with i factors, which in this example comprises

multivariate normal distributions for a random vector taking values in R
6. The distributions

in Mi have an arbitrary mean vector but their covariance matrix is constrained to be of the

form Σ+ββ′, where Σ is a diagonal matrix with positive entries and β is a real 6 × i matrix.

This particular covariance structure arises from conditional independence of the six observed

random variables given i latent factors.

Lopes and West (2004) restricted the number of factors i to at most 3, so as not to overpa-

rameterize the 6 × 6 covariance matrix. Their Tables 3 and 5 report the following two sets of

posterior model probabilities obtained from Markov chain Monte Carlo computation:

P.M1|Yn/=0:00, P.M2|Yn/=0:88, P.M3|Yn/=0:12 .5:1/

and

P.M1|Yn/=0:00, P.M2|Yn/=0:98, P.M3|Yn/=0:02: .5:2/

They are based on slightly different priors for the parameters .Σ, β/ of each model. Both types

of prior have all parameters independent and use inverse gamma distributions for the diagonal

entries of Σ. The entries of β are IID normal, but in doing so different identifiability constraints

are used for result (5.1) versus result (5.2). The detailed specification of the prior is given in

sections 2.3 and 6.3 of Lopes and West (2004).

We consider these same data and compute Schwarz’s BIC as well as our singular BIC. We

find it natural to consider also the model M0 that postulates independence of the six changes in

exchange rates considered. On the basis of on-going work of the first author and collaborators,

we use the learning coefficients λij for sBIC in Table 2, with all multiplicities mij = 1. These

learning coefficients do not include the contribution of 6=2 =3 from the means of the six vari-

ables. Note that the ‘top coefficient’ λii equals the dimension of the set of covariance matrices

in model Mi; for a computation of this dimension see, for example, theorem 2 in Drton et al.

(2007).

Exponentiating and renormalizing either set of BIC-scores, we obtain the following approx-

imate posterior model probabilities:

P.M0|Yn/ P.M1|Yn/ P.M2|Yn/ P.M3|Yn/

BIC 0:0000 0:0000 0:9999 0:0001

sBIC 0:0000 0:0000 0:9797 0:0203:

.5:3/
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Singular Models 21

Table 2. Learning coefficients λij for sBIC

i Coefficients for the following values of j:

j =0 j =1 j =2 j =3

0 3
1 9=2 6
2 6 29=4 17=2
3 15=2 17=2 19=2 21=2

Comparing result (5.3) with results (5.1) and (5.2), we see that the approximation that is given

by sBIC gives results that are closer to the Monte Carlo approximations than those from the

standard BIC which leads to overconfidence in model M2. Of course, this assessment is nec-

essarily subjective as it pertains to a comparison with two particular priors P.πi|Mi/ in each

model.

To explore the connection between the information criteria and fully Bayesian procedures

further, we subsampled the exchange rate data considered to create 10 data sets for each sample

size n∈{25, 50, 75, 100}. For each data set we ran the Markov chain Monte Carlo algorithms of

Lopes and West (2004), focusing on the prior underlying result (5.2). In Fig. 3 we present box-

plots of the four posterior model probabilities. When comparing the spread in the approximate

posterior probabilities, sBIC gives a far better agreement with the fully Bayesian procedure than

does the standard BIC.

For the data considered, the model uncertainty mostly concerns the decision between two

and three factors and can be summarized by the Bayes factor for this model comparison. In

Fig. 4, we plot the log-Bayes-factors that were obtained from the Markov chain Monte Carlo

procedure against those computed via the information criteria. The results from sBIC are seen

to be quite close to Bayesian; the filled points in the scatter plot cluster around the 45◦ line. The

plot also illustrates one more time that BIC is overly certain about the number of factors being

2.

6. Applications in mixture modelling

We now apply sBIC to select the number of mixture components for finite mixture models, which

is a problem where the standard dimension-based BIC has a tendancy to underselect the number

of components (Charnigo and Pilla (2007), section 4.2). Determining the learning coefficients

for mixture models can be a complicated problem but it is possible to give simple and general

bounds, and we demonstrate that these bounds yield useful versions of sBIC (recall remark 4).

We begin with simulations for mixtures of binomial distributions. Next, we fit Gaussian mixture

models to the familiar galaxies data (e.g. Roeder and Wasserman (1997)) to illustrate that sBIC

allows for more posterior mass to be assigned to larger models, which seems more in line with

fully Bayesian procedures for model determination. Finally, we present simulations for latent

class analysis, which involves mixture models with multiparameter component distributions. In

this setting, the values of the learning coefficients depend in important ways on the choice of

prior distributions, which can have substantial influence on the model selection behaviour of

sBIC.
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Fig. 3. Boxplots of posterior model probabilities in a factor analysis of exchange rate data under subsam-
pling to size (a) n D 25, (b) n D 50, (c) n D 75 and (d) n D 100; results from a Markov chain Monte Carlo
algorithm (‘Bayes’), Schwarz’s BIC and the new sBIC

6.1. Binomial mixtures

Suppose that Yn1, : : : , Ynn are IID counts whose distribution π is modelled as a mixture of

binomial distributions. We write B.k, θ/ for the binomial distribution with sample size parameter

k and success probability θ ∈ [0, 1]. To match previously used notation, let i denote the number

of mixture components, and let model Mi comprise the distributions

πi.α, θ/=
i

∑

h=1

αh B.k, θh/,

where α = .α1, : : : , αi/ is a vector of unknown non-negative mixture weights that sum to 1,

and θ = .θ1, : : : , θi/ ∈ [0, 1]i is a vector of unknown success probabilities. We assume that the

binomial sample size parameter k is known. Throughout this subsection, we assume that each

prior distribution P.α, θ|Mi/ has a density that is bounded away from zero on ∆i−1 × [0, 1]i.

Consider now a data-generating distribution π0 ∈Mi. The fibre of π0 under the parameteri-

zation of Mi is the preimage

Fi.π0/={.α, θ/∈∆i−1 × [0, 1]i :πi.α, θ/=π0}, .6:1/

containing all parameter vectors .α, θ/ that define the same distribution π0. Here, ∆i−1 denotes

the .i−1/-dimensional probability simplex. Clearly, if .α, θ/∈Fi.π0/ then Fi.π0/ also contains

any vector that is obtained by permuting the entries of θ and, accordingly, those of α. When

i is not too large with respect to k, specifically, if 2i − 1 � k, then the fibre of a distribution
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Fig. 4. Scatter plot of log-Bayes factors comparing the results of a Markov chain Monte Carlo algorithm
with BIC (ı) and sBIC (�) in a factor analysis of exchange rate data under subsampling to size (a) nD25, (b)
nD50, (c) nD75 and (d) nD100

π0 =πi.α, θ/ in Mi \Mi−1 contains only the i! points in the orbit of .α, θ/, and

dim.Mi/=2i−1; .6:2/

see proposition 4 in Teicher (1963) or also section 3.1 in Titterington et al. (1985).

When the number of mixture components i is larger than needed, however, a severe non-

identifiability problem arises. This is discussed, for instance, in section 1.3 of Frühwirth-Schnatter

(2006). We provide some details that form the basis for bounds on learning coefficients that we

shall consider for a definition of sBIC.

Proposition 4. Suppose that 2i − 1 � k and consider a binomial mixture π0 ∈ Mj \ Mj−1

for j < i. Then the fibre Fi.π0/ from equation (6.1) is the intersection of ∆i−1 × [0, 1]i

with a finite union of .i − j/-dimensional affine spaces. In particular, Fi.π0/ has dimension

i− j.
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24 M. Drton and M. Plummer

Proof. Since π0 ∈Mj \Mj−1, we have

π0 =
j

∑

h=1

α0h B.k, θ0h/, .6:3/

where the success probabilities θ01, : : : , θ0j are pairwise disjoint and the mixture weights α01, : : : ,

α0j are positive. The probabilities θ0h and α0h in equation (6.3) are unique up to permutation.

We may represent π0 as an element of Mi by setting i−j of the mixture weights to 0, in which

case i− j of the success probabilities can be chosen arbitrarily. More precisely, if we take

α= .α01, : : : , α0j, 0, : : : , 0/∈∆i−1,

then .α, θ/∈Fi.π0/ for any vector θ with θh =θ0h for 1�h�j. Hence, the fibre Fi.π0/ contains

the .i− j/-dimensional set

{.α01, : : : , α0j, 0, : : : , 0/}×{.θ01, : : : , θ0j/}× [0, 1]i−j .6:4/

and its orbit under the action of the symmetric group.

A second way to represent π0 as an element of Mi is to choose a vector θ ∈ [0, 1]i that has

precisely j distinct entries, the distinct values being θ01, : : : , θ0j. For each index h ∈ {1, : : : , j},

let Jh be the set of indices l ∈ {1, : : : , i} such that θl = θ0h. Then J1, : : : , Jj form a partition of

{1, : : : , i}. For instance, if

θ= .θ01, θ02, : : : , θ0.j−1/, θ0j, : : : , θ0j/∈ [0, 1]i, .6:5/

then Jh = {h} for all h < j and Jj = {j, : : : , i}. For .α, θ/ to be in the fibre Fi.π0/, it needs to

hold that

∑

l∈Jh

αl = α0h, h=1, : : : , j:

Clearly, there are now i−j degrees of freedom in the choice of the mixture weights. For instance,

the fibre Fi.π0/ contains the .i− j/-dimensional set

{.α01, : : : , α0,j−1/}× .α0j∆i−j/×{.θ01, : : : , θ0j, θ0j, : : : , θ0j/} .6:6/

and its orbit under the action of the symmetric group.

When i=2 and θ0 =B.k, 2
3
/ with k �3, then the fibre Fi.π0/ is a union of three line segments.

This fibre is plotted in Fig. 5: the two grey lines intersect the boundary of the probability simplex

∆1, i.e. they have α=α1 =0 or 1−α=α2 =0.

By proposition 4, the fibre Fi.π0/ of a generic distribution π0 ∈Mj, j � i, is a set of dimension

i− j. The learning coefficient λi.π0/ for model Mi depends only on j and can be bounded by

subtracting the dimension of the fibre from the model dimension; see section 7.3 in Watanabe

(2009). Writing λij =λi.π0/, we find that

λij � λ̄
1
ij := 1

2
{dim.Mi/− .i− j/}= 1

2
{2j −1+ .i− j/}= 1

2
.i+ j −1/: .6:7/

Now it is known that the actual learning coefficient for binomial mixture models (i�2) is smaller

than the λ̄
1
ij from expression (6.7). Indeed, for a prior density that is bounded away from zero

on ∆i−1 × [0, 1]i, Yamazaki and Watanabe (2004) have shown that

λi,i−1 = i− 5
4
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Fig. 5. Fibre of a binomial distribution in the model that mixes two binomial distributions

whereas λ̄
1
i,i−1 = i−1. The model dimension from equation (6.2) yields the looser bound i− 1

2
.

Although no general formulae for the coefficients λij have been obtained thus far, the analysis

of Rousseau and Mengersen (2011), equations (5) and (6), yields the tighter bound

λij � λ̄
0:5
ij := 1

2
{2j −1+ 1

2
.i− j/}= i+3j

4
− 1

2
: .6:8/

For j = i−1, we have λ̄
0:5
ij =λij = i− 5

4
but we do not expect this to be true in general.

In light of the above discussion, we argue that using the bounds λ̄
0:5
ij from expression (6.8)

or even the very easily derived bound λ̄1
ij from expression (6.7) is more appropriate for the

definition of a BIC than merely working with the model dimension from expression (6.2). For

a numerical experiment, we generate data from a distribution π0 that is a mixture of four (but

not fewer) binomial distributions that each have sample size parameter k =30. Specifically, we

consider the mixture weights

α01 = 1
4

, α02 = 1
4

, α03 = 1
4

, α04 = 1
4

and the success probabilities

θ01 = 1
5

, θ02 = 2
5

, θ03 = 3
5

, θ04 = 4
5
:

For varying values n, we generate an IID sample of size n from π0 and select the number of

mixture components by maximizing

(a) Schwarz’s BIC which uses the model dimension 2i−1,

(b) sBIC0:5, by which we mean the singular BIC computed by using the bounds λ̄
0:5
ij from

expression (6.8), and

(c) sBIC1, which stands for the singular BIC computed by using the λ̄
1
ij from expression (6.7).
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Fig. 6. Frequencies of estimated number of binomial mixture components using Schwarz’s BIC ( ), sBIC0:5
( ) and sBIC1 ( ) (results from 200 simulations with sample size parameter k D 30 and true number of
components equal to 4): (a) nD50, (b) nD200, (c) nD500

Both sBIC0:5 and sBIC1 have all multiplicities mij set to their lower bound 1. We repeat the

model selection 200 times.

The frequencies of how often a particular number of components was selected by each method

are depicted in Fig. 6, where we show plots for n=50, 200, 500. The results are similar to those

in the rank selection experiment from Section 5.1 in that our singular BIC allows us to identify

the true number of components earlier than BIC. Both sBIC0:5 and sBIC1 alleviate some of the

overpenalization that arises when using solely the model dimension, with sBIC0:5 performing

the best.

6.2. Gaussian mixtures

Aoyagi (2010a) has found the learning coefficients of univariate Gaussian mixture models when

the variances of the component distributions are known and equal to a common value. Using

them in sBIC yields a criterion whose model selection properties are similar to what we have

shown for reduced rank regression and binomial mixtures. In this section, we report instead

on a data analysis with Gaussian mixtures where the variances are unknown and allowed to be

unequal.

Let Mi be the (univariate) Gaussian mixture model with i mixture components, which com-

prises the distributions

πi.α, µ, σ2/=
i

∑

h=1

αh N .µh, σ2
h/

for a vector of mixture weights α= .α1, : : : , αi/∈∆i−1, choices of means µ= .µ1, : : : , µi/∈ R
i

and variances σ2 = .σ2
1 , : : : , σ2

i /∈ .", ∞/i. Here, we made explicit that the software that we shall

use later, namely the R package mclust (Fraley et al., 2012), uses a lower bound ǫ>0 to avoid

the well-known singularities in the likelihood surfaces that are obtained by letting one or more

variances tend to 0. Such a lower bound also appears in consistency theory for BIC (Keribin

(2000), proposition 4.2).

In the Gaussian mixture model Mi, the fibre of a distribution π0 is the set

Fi.π0/={.α, µ, σ2/∈∆i−1 ×R
i × .ǫ, ∞/i :πi.α, µ, σ2/=π0}: .6:9/

By proposition 1 in Teicher (1963), if π0 ∈Mi \Mi−1 then Fi.π0/ is finite with |Fi.π0/|= i!, and

we have

dim.Mi/=3i−1: .6:10/
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However, as discussed in Section 6.1, a distribution π0 ∈Mj ⊂Mi, j < i, will have an infinite

fibre Fi.π0/ due to the obvious non-identifiability problem arising from specifying the number

of mixture components i larger than needed.

As described in the proof of proposition 4, a distribution π0 ∈Mj \Mj−1 with j < i can be

represented as a member of Mi by setting i− j of the mixture weights to 0, which here leaves

i−j of the mean parameters and i−j of the variance parameters free. Hence, the fibre contains

a set of dimension 2.i− j/ that is made up of triples .α, µ, σ2/ that have α on the boundary of

the probability simplex ∆i−1. By this fact, the learning coefficient λij =λi.π0/ can be bounded

as

λij � λ̄
1
ij := 1

2
{dim.Mi/−2.i− j/}= 1

2
{3j −1+ .i− j/}= 1

2
.i+2j −1/; .6:11/

see again section 7.3 in Watanabe (2009). For the bound to apply, however, the density of the

prior distribution P.α, µ, σ2|Mi/ must be bounded away from zero in a neighbourhood of a

2.i− j/-dimensional subset of Fi.π0/. This is so if the prior density for α is bounded away from

zero on and near the boundary of the probability simplex ∆i−1; a uniform distribution on ∆i−1

would be an example.

Keeping with π0 ∈ Mj ⊂ Mi, let ∆
o
i−1 denote the interior of the probability simplex, and

consider instead the fibre

Fo
i .π0/ = {.α, µ, σ2/∈∆

o
i−1 ×R

i × .ǫ, ∞/i :πi.α, µ, σ2/=π0} .6:12/

that has all mixture weights non-zero. This ‘positive fibre’ Fo
i .π0/ is of lower dimension than

Fi.π0/. Indeed, equating means and variances between mixture components by analogy with

expressions (6.5) and (6.6) shows that Fo
i .π0/ has dimension i − j. Hence, for a prior that is

supported on a subset of ∆
o
i−1, subtraction of the fibre dimension leads to the bound

λij � λ̄
2
ij := 1

2
{dim.Mi/− .i− j/}= 1

2
{3j −1+2.i− j/}= 1

2
.2i+ j −1/: .6:13/

Nevertheless, the more refined analysis from Rousseau and Mengersen (2011), equations (5)

and (6), shows that the bound λ̄
1
ij from expression (6.11) remains valid when the prior density

is bounded away from zero in a neighbourhood of a point in Fo
i .π0/.

To illustrate the above result in an example, take π0 =N .0, 1/: a standard normal distribution.

Then the fibre F2.π0/ in the two-component mixture model is the union of two planes and a

line intersected with ∆1 ×R
2 × .ǫ, ∞/2. The structure of the fibre is as in Fig. 5, except that the

two grey line segment now are two-dimensional rectangular strata. The black part with mixture

weights α1 =α and α2 =1−α remains a line segment. The set Fo
i .π0/ then comprises only this

line segment but not the two-dimensional strata.

Using the bounds λ̄
1
ij from expression (6.11) and setting all multiplicities to 1 yields a version of

sBIC, which we denote by sBIC1. (We shall briefly comment on the bounds λ̄
2
ij in our conclusion.)

We apply sBIC1 to a familiar example, namely the galaxies data set that has been discussed in

detail in Aitkin (2001) and also in example 4 in Marin et al. (2005). We use the EM algorithm

implemented in the R package mclust (Fraley et al., 2012) to fit the mixture models and base

our results on the best local maxima of the likelihood function that were found in repeated

EM runs. For each model, we ran the EM algorithm from 5000 random initializations that

were created by drawing, independently for each data point, a vector of cluster membership

probabilities from the uniform distribution on the relevant probability simplex. Fig. 7 depicts

the resulting values of BIC and sBIC1. These are converted into posterior model probabilities in
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Fig. 7. Galaxies data (mixture of Gaussians with unequal variances): ı, BIC; C, sBIC1
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Fig. 8. Galaxies data (mixture of Gaussians with unequal variances): posterior model probabilities from
BIC ( ), sBIC1 ( ) and Markov chain Monte Carlo sampling per Richardson and Green (1997) ( )

Fig. 8, where we also show posterior probabilities from the fully Bayesian analysis of Richardson

and Green (1997) who, in particular, adopted a uniform prior for the mixture weights.

Fig. 7 shows that the information criteria assign essentially the same value to the models Mi

with i � 3. This is due to a poor model fit, i.e. very small maximal likelihood under M1 and

M2. Starting with four components differences emerge. BIC attains high values for i∈{3, 4, 5}
and decreases very quickly for larger i. The decrease is nearly as quick as the increase through

the models with i�3 components, where those with i�2 seem too simple. In contrast, sBIC1 is

largest for i=6 followed closely by i=5, and its values remain rather large for i∈{7, 8}. The decay

for larger i is far slower than for BIC. In Fig. 8, approximate posterior model probabilities from

sBIC1 are closer to the Monte Carlo estimates that were reported by (Richardson and Green

(1997); see also Lee and Robert (2013).
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6.3. Latent class analysis

Our last experiments pertain to latent class analysis (LCA), in which the joint distribution of

a collection of categorical variables, the items, is modelled to exhibit conditional independence

given a categorical latent variable. The values of the latent variable are the classes. LCA models

are also known as naive Bayes models (Geiger et al., 2001) and are related to secant varieties

of Segre varieties studied in algebraic geometry (Drton et al. (2009), chapter 4.1). We consider

them here because LCA models are mixture models in which the component distributions are

taken from a family of larger dimension. As we shall see, this makes the choice of the priors on

the mixture weights more important.

We shall treat the case of r binary items whose values we code to be in {0, 1}. The model Mi

with i classes then postulates that the joint probabilities for the binary items Y1, : : : , Yr are of

the form

Pr.Y1 =y1, : : : , Yr =yr/=
i

∑

h=1

αh

r
∏

l=1

p
yl

hl.1−phl/
1−yl ,

where αh is the probability of being in class h, and phl is the conditional probability of Yl = 1

given membership in class h. We emphasize that r is equal to the dimension of the family of

distributions from which the mixture components are taken. Counting parameters we expect

that the dimension of the LCA model Mi is

min{ir + .i−1/, 2r −1}: .6:14/

There are exceptional cases where this is not the correct dimension; see for example example

4.1.8 in Drton et al. (2009). However, theorem 2.3 in Catalisano et al. (2005) guarantees that

all models in our simulation study below have dimension given by expression (6.14). All these

models are also generically identifiable up to label swapping by corollary 5 in Allman et al.

(2009).

Let π0 ∈Mj \Mj−1 for j < i, and assume that dim.Mi/ = i − 1 + ir � 2r − 1. Reasoning as

in Section 6.2, dimension counting yields two simple bounds on the learning coefficients. For

φ> 0, define

λ̄
φ

ij := 1
2
{jr + j −1+ .i− j/φ}: .6:15/

(Note that r is the dimension of the model for a single mixture component. The notation from

expression (6.15) matches the earlier use in Section 6.1, where r = 1, and that in Section 6.2,

where r =2.) When allowing zero mixture weights αh, the fibre of π0 has dimension r.i− j/ and

the analogue of expression (6.11) becomes

λij �
1
2
{dim.Mi/− r.i− j/}= 1

2
rj + i−1= λ̄

1
ij: .6:16/

This bound is of relevance when the prior distribution of the mixture weights αh is bounded

away from zero in a neighbourhood of the boundary of the probability simplex ∆i−1. Similarly,

if the fibre is restricted to include only points with all αh >0, then the dimension of this ‘positive

fibre’ is only i− j and the analogue of expression (6.13) is

λij �
1
2
{dim.Mi/− .i− j/}= 1

2
.ri+ j −1/= λ̄

r

ij: .6:17/

This bound is of interest when the prior distribution of the mixture weights is zero along the

boundary of ∆i−1 but bounded away from zero in a neighbourhood of a point in the positive
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fibre. However, as in Sections 6.1 and 6.2, we may conclude from the work of Rousseau and

Mengersen (2011) that for such priors it holds that

λij �
1
2

{

rj + j −1+ .i− j/
r

2

}

= λ̄
r=2
ij : .6:18/

Contrasting the difference in dimension of the fibres Fi.π0/ and Fo
i .π0/ when π0 ∈Mj with

j < i, it is clear that the choice of priors for the mixture weights α may considerably impact

posterior model probabilities. In particular, if the prior assigns non-negligible mass near the

boundary of the probability simplex, then the likelihood function for a sample from π0 ∈Mj

will be large near the high dimensional strata of Fi.π0/. Model Mi then behaves like a low

dimensional model, and the Occam’s razor effect from integrating the likelihood function in a

Bayesian approach to model determination is weak. For our sBIC, this expresses itself via smaller

values of (bounds on) learning coefficients, which leads to less penalization of the likelihood.

In LCA and similar examples of mixtures of multiparameter distributions, it is thus useful to

be more explicit about the effects of priors.

Suppose that the prior distribution P.α|Mi/ is a Dirichlet distribution with all hyperparam-

eters equal to φ> 0, and that the remaining parameters phl are independent of α a priori and

have a positive joint density on [0, 1]ir. Then the learning coefficients λij =λi.π0/ depend on φ,

and the result in Rousseau and Mengersen (2011), equations (5) and (6), shows that the bounds

that were considered above may be refined to

λij �min{λ̄
φ

ij, λ̄
r=2
ij }: .6:19/

In light of this bound, we let sBICφ denote the version of our information criterion that is

obtained when using the λ̄
φ

ij from expression (6.15) as values of the learning coefficients and

setting all multiplicities to 1. The behaviour of sBICφ may depend heavily on the choice of φ,

with larger values of φ leading to stronger penalties and selection of a smaller number of mixture

components.

When the goal is to stay close to Bayesian inference using Dirichlet priors for α, it may be

clear which value of φ to use. It is less clear, however, what a default choice for φ should be when

sBICφ is intended to be used as an information criterion with good frequentist model selection

properties. Some guidance is provided by theorem 1 in Rousseau and Mengersen (2011), which

shows that sufficiently small Dirichlet hyperparameters allow for detection of 0 components in

an overfitting mixture model. According to their result, working with a single overfitting mixture

model can be an alternative to the model selection set-up that is treated in this paper. When

aiming to determine the number of mixture components in a model selection approach, however,

larger Dirichlet hyperparameters have appeal in that they avoid large marginal likelihood for

models for which one or more mixture components will remain empty when using the model

for clustering. This point is also made in section 4.2 of Frühwirth-Schnatter (2006). More

specifically, if we wish to avoid that overfitting mixture models act like models with fewer

components, then theorem 1 of Rousseau and Mengersen (2011) suggests that φ should be

chosen no less than r=2. Given the bound from inequality (6.19), we shall thus explore the

properties of sBICφ with φ close to r=2 and compare it with the standard BIC, which is also

equal to sBICr+1. This said, learning coefficients as large as λ̄
φ

ij with φ>r=2 cannot be realized

when the prior density for the probabilities phl is everywhere positive but they could arise from

priors whose densities are zero at the singularities with mixture weights αh >0; see Petralia et al.

(2012) for work that is related to this issue.

Our simulations apply BIC and sBICφ for recovery of the number of classes i in LCA. We

adopt the following four settings from Nylund et al. (2007) that each have binary items:
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Table 3. LCA: frequencies of selection of the number of classes by BIC and sBICφ for various values of φ
and four true classes

Model Frequencies for the Frequencies for the Frequencies for the
following classes: following classes: following classes:

n 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

8 item (equal) BIC sBIC5 sBIC4:5

50 32 39 26 3 0 0 2 9 21 68 0 0 2 4 14 79 1 0
100 2 13 32 53 0 0 0 0 3 97 0 0 0 0 0 100 0 0
150 0 1 6 93 0 0 0 0 0 99 1 0 0 0 0 98 2 0
200 0 0 2 98 0 0 0 0 0 99 1 0 0 0 0 97 3 0
500 0 0 0 100 0 0 0 0 0 100 0 0 0 0 0 100 0 0

sBIC4 sBIC3:5 sBIC3

50 0 2 9 85 4 0 0 0 4 78 18 0 0 0 1 61 29 9
100 0 0 0 96 4 0 0 0 0 80 20 0 0 0 0 62 33 5
150 0 0 0 94 5 1 0 0 0 87 12 1 0 0 0 65 30 5
200 0 0 0 96 3 1 0 0 0 86 10 4 0 0 0 78 17 5
500 0 0 0 97 3 0 0 0 0 91 9 0 0 0 0 83 14 3

8 item(unequal) BIC sBIC5 sBIC4:5

100 9 80 11 0 0 0 0 21 66 13 0 0 0 12 67 20 1 0
200 0 46 50 4 0 0 0 3 61 36 0 0 0 1 51 47 1 0
300 0 23 70 7 0 0 0 0 31 68 1 0 0 0 25 73 2 0
500 0 0 53 47 0 0 0 0 5 95 0 0 0 0 3 97 0 0

1000 0 0 2 98 0 0 0 0 0 100 0 0 0 0 0 100 0 0

sBIC4 sBIC3:5 sBIC3

100 0 7 58 32 2 1 0 3 45 43 8 1 0 1 23 53 16 7
200 0 1 43 53 3 0 0 0 35 57 8 0 0 0 19 59 22 0
300 0 0 21 76 3 0 0 0 13 76 11 0 0 0 5 72 20 3
500 0 0 1 98 1 0 0 0 0 91 9 0 0 0 0 82 18 0
1000 0 0 0 100 0 0 0 0 0 99 1 0 0 0 0 91 9 0

10 item BIC sBIC6 sBIC5:5

100 0 18 82 0 0 0 0 0 55 44 1 0 0 0 46 51 3 0
200 0 1 84 15 0 0 0 0 23 77 0 0 0 0 16 83 1 0
300 0 0 52 48 0 0 0 0 5 95 0 0 0 0 3 96 1 0
500 0 0 11 89 0 0 0 0 1 99 0 0 0 0 1 99 0 0

1000 0 0 0 100 0 0 0 0 0 100 0 0 0 0 0 100 0 0

sBIC5 sBIC4:5 sBIC4

100 0 0 31 65 4 0 0 0 22 63 15 0 0 0 10 50 32 8
200 0 0 12 84 4 0 0 0 9 77 13 1 0 0 6 67 22 5
300 0 0 0 99 1 0 0 0 0 94 6 0 0 0 0 85 14 1
500 0 0 0 100 0 0 0 0 0 96 4 0 0 0 0 87 12 1

1000 0 0 0 98 2 0 0 0 0 98 2 0 0 0 0 96 3 1
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Table 4. LCA: frequencies of selection of the number of classes by BIC and sBICφ for various values of φ
and three true classes (15-item model)

n Frequencies for the Frequencies for the Frequencies for the
following classes: following classes: following classes:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

BIC sBIC8:5 sBIC8

50 0 0 100 0 0 0 0 0 92 8 0 0 0 0 88 12 0 0
100 0 0 100 0 0 0 0 0 98 2 0 0 0 0 93 7 0 0
200 0 0 100 0 0 0 0 0 99 1 0 0 0 0 97 3 0 0
300 0 0 100 0 0 0 0 0 100 0 0 0 0 0 99 1 0 0
400 0 0 100 0 0 0 0 0 100 0 0 0 0 0 100 0 0 0
500 0 0 100 0 0 0 0 0 100 0 0 0 0 0 99 1 0 0

1000 0 0 100 0 0 0 0 0 100 0 0 0 0 0 100 0 0 0

sBIC7:5 sBIC7 sBIC6:5

50 0 0 82 18 0 0 0 0 69 27 4 0 0 0 51 36 10 3
100 0 0 81 19 0 0 0 0 68 32 0 0 0 0 53 43 4 0
200 0 0 94 5 1 0 0 0 86 13 1 0 0 0 68 25 7 0
300 0 0 98 2 0 0 0 0 96 4 0 0 0 0 88 12 0 0
400 0 0 100 0 0 0 0 0 94 6 0 0 0 0 87 13 0 0
500 0 0 99 1 0 0 0 0 96 4 0 0 0 0 91 9 0 0

1000 0 0 100 0 0 0 0 0 100 0 0 0 0 0 100 0 0 0

(a) r =8 items, i0 =4 true classes and equal class sizes (α1 =α2 =α3 =α4);

(b) r =8 items, i0 =4 true classes and unequal class sizes;

(c) r =10 items, i0 =4 true classes and unequal class sizes;

(d) r =15 items, i0 =3 true classes and equal class sizes (α1 =α2 =α3).

Settings (b) and (c) have their unequal class sizes given by α1 =1=21, α2 =2=21, α3 =3=21 and

α4 = 15=21. We refer the reader to Table 2 in Nylund et al. (2007) for the precise description

of the distributions that we simulate from. (Our weights αi are proportional to the values 0:05,

0:1, 0:15 and 0:75, with sum 1.05, that are stated in Table 2 of Nylund et al. (2007).) Settings (a)

and (b) differ only in the values of the mixture weights or class probabilities αh. They are both

‘simple’ in the sense that for each item l only one of the class conditional probabilities phl is large.

Setting (d) is simple in the same sense. In setting (c), each item has two large and equal class

conditional probabilities phl and the other two probabilities phl are small and equal. For each

setting, we draw 100 samples of various sizes n and select the number of classes i∈{1, : : : , 6} by

maximizing the information criteria. Specifically, we optimized the standard dimension-based

BIC as well as sBICφ with φ=0:5, 1, 1:5, : : : , r. Maximum likelihood estimates were computed

by using the R package poLCA (Linzer and Lewis, 2011).

For settings (a)–(c), Table 3 reports the frequencies of how often a particular number of classes

i was selected by BIC and sBICφ with 2φ∈{r −2, r −1, r, r +1, r +2}. We see a tendency for the

standard BIC to select overly simple models, especially at small sample size. This underselection

is alleviated when using the criterion sBICφ but some overselection arises for φ<r=2. The choice

φ= r=2 performs quite well, and so does φ= .r +1/=2.

We do not list any results for small values of φ, such as φ=1, which corresponds to a uniform

distribution as prior for the mixture weights. In all except a handful of cases, sBIC1 selected
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the largest allowed number of classes, i.e. i= 6. When the sample size is n= 500 in setting (a),

the relative frequency of sBICφ selecting the truth of i0 = 4 classes is 0.01, 0.18 and 0.57 for

φ= 1:5, 2, 2:5 respectively. For n = 1000 in setting (b), these numbers are 0.02, 0.31 and 0.70.

For n=1000 in setting (c), they are 0.00, 0.00 and 0.14.

Table 4 lists the model selection frequencies for the problem with r = 15 items and i0 =
3 true classes. This is a problem in which models with i � 2 classes fit so poorly that they

are never selected. All methods using a heavy penalty thus select the true number of classes

in all cases. This happens for BIC and sBICφ with φ � 11. As earlier, we report details for

2φ ∈ {r − 2, r − 1, r, r + 1, r + 2}. We see overselection for φ < r=2 = 7:5, which decreases as φ

is increased to φ= r=2 = 7:5, φ= .r + 1/=2 = 8 and φ= r=2 + 1 = 8:5. We note that sBICφ with

φ � 3 always selected the maximum allowed number of classes (i = 6), and the true number

of classes (i0 = 3) is never selected when φ = 3:5. When n = 1000, the true number of classes

(i0 =3) is selected with relative frequency 0.03, 0.33, 0.69, 0.88 and 0.96 when φ=4, 4.5, 5, 5.5,

6 respectively.

In summary, sBICφ can provide considerable improvements over the standard BIC in terms

of frequentist model selection properties. To avoid drastic overselection, φ should not be chosen

too small, compared with r=2. Our above simulations suggest that taking φ= r=2 or possibly a

little larger, e.g. as φ= .r + 1/=2, could be a good default beyond the specific settings of LCA

that we treated.

7. Conclusion

In this paper we introduced a new BIC for singular statistical models. The new criterion, sBIC,

is free of Monte Carlo computation and coincides with the widely used BIC of Schwarz when

the model is regular. Moreover, the criterion is consistent and maintains a rigorous connection

to Bayesian approaches even in singular settings. This latter behaviour is made possible by

exploiting theoretical knowledge about the learning coefficients that capture the large sample

behaviour of the marginal likelihood integrals concerned. In simulations and data analysis, we

showed that sBIC indeed leads to a ‘more Bayesian’ assessment of model uncertainty and that it

may also lead to improved frequentist model selection when compared with the standard BIC.

7.1. Priors matter for sBIC

The marginal likelihood of a singular model may depend quite heavily on the prior distribution.

In fact, the choice of prior may also have a strong influence on the learning coefficients that

quantify the Occam’s razor effect resulting from the integration over parameters. Therefore,

different versions of sBIC, motivated by different choices of priors, can be of interest for a given

singular model selection problem.

An example where prior distributions play an important role is mixture modelling with com-

ponent distributions from a multiparameter family; recall our discussion in Section 6. Using

LCA for illustration (Section 6.3), we showed how the learning coefficients and thus also sBIC

depend in particular on whether and how quickly the prior density for the mixture weights decays

to zero or diverges as the weight vector approaches the boundary of the probability simplex. We

explored this in the context of Dirichlet prior distributions. (Strictly speaking, we considered gen-

eral bounds for the learning coefficients of mixture models.) For good frequentist model selection

of sBIC we suggest that Dirichlet hyperparameters are not chosen too small. In particular, the

sBIC based on a uniform distribution on the mixture weights cannot be recommended as a de-

fault for analysing mixtures of multiparameter distributions. Similar recommendations for fully

Bayesian approaches to mixture model selection can be found in Frühwirth-Schnatter (2006).
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7.2. Dependence of sBIC on the ‘universe of models’

When computing the sBIC of model Mi, we average asymptotic proxies for the marginal like-

lihood that are based on Schwarz’s idea of retaining terms from an asymptotic expansion. The

fact that there is not just a single quantity to contemplate is a feature that distinguishes singular

from regular models. The terms that are being averaged correspond to submodels Mj ⊆ Mi

that are deemed competitors in the model selection problem. As a result, the sBIC of a singular

model Mi will generally depend on which set of models we wish to select from.

In most model selection problems there is a canonical set of models to be considered. For

instance, in mixture modelling one typically considers all models with up to a certain number

of components. We envision that sBIC will generally be applied with respect to such a natural

collection of models, even if the primary focus was on two specific models.

It is also clear from its definition that the sBIC of model Mi can change only when omitting

from consideration a model Mj ⊂ Mi. We would expect this to be done only if it is certain

that these simpler models are fitting the data poorly, which would then have little effect on

sBIC-scores. Consider as an example the version of sBIC for the galaxies data from Section

6.2 (denoted there as sBIC1). We might wonder how the sBIC-score for M3 would change if

we no longer considered the too simplistic M1 and M2, which have only one and two mixture

components respectively. In the new context, M3 would be the minimal model and its sBIC-

score would coincide with the ordinary BIC of M3. In Fig. 7, the points depicting the BIC- and

the sBIC-score for M3 cannot be distinguished. There is virtually no change in the sBIC-scores

when omitting models M1 and M2.

Nevertheless, it would be only more appealing if we could define the sBIC of a model without

reference to the fit of other models. The mathematical reason for our consideration of other

models is the fact that our criterion leverages large sample asymptotics that are based on fixing

a data-generating distribution and letting the sample size grow. As in related distribution theory

for hypothesis tests, the limits that we obtain will in general not change in a continuous fashion

as we vary the data-generating distribution. (Of course, finite sample behaviour of the marginal

likelihood will depend on the data-generating distribution in a continuous fashion.) Hence, if

we want to avoid consideration of other models in the definition of a ‘singular BIC’, then more

refined mathematical insights would be necessary. Specifically, we would need to find uniform

asymptotic expansions to the marginal likelihood, in the sense of Wong (2001), chapter VII.

This, however, is a task that would be significantly more difficult to accomplish than finding the

already non-trivial to obtain learning coefficients. Indeed, we are not aware of any discussion

of uniform expansions in the statistical literature, let alone any results on their form for specific

examples. In light of these difficulties, we consider our proposed sBIC a promising approach of

averaging pointwise expansions to mimic how uniform expansions would have to behave.

7.3. Large numbers of models

For problems that involve a moderate number of models and are amenable to an exhaustive

model search, the computational effort in the calculation of sBIC-scores is comparable with

that for the ordinary BIC as the effort is typically dominated by the process of fitting all models

considered to the available data. However, the fact that our definition of sBIC requires fitting

all models considered has a clear computational disadvantage when an exhaustive search is not

possible. Indeed, it is not immediately clear how to implement strategies such as greedy search

with sBIC. One possible approach would be to define sBIC by averaging only over ‘neighbouring’

submodels but the merit of such strategies still needs to be explored. This said, the work of Drton

et al. (2016) shows promising results for selection of Gaussian latent forest models.
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We note that when treating problems with a large number of models it can be beneficial

to adopt non-uniform prior model probabilities; compare for example the work on regression

models by Chen and Chen (2008) and Scott and Berger (2010), and the work on graphical

models by Foygel and Drton (2010) and Gao et al. (2012). As mentioned in remark 3, it would

be straightforward to incorporate prior model probabilities in the definition of sBIC.

7.4. Use of maximum likelihood estimates

Our aim was to generalize Schwarz’s BIC in a way that recovers his familiar criterion when

the models considered are regular (recall remark 2). For this, we estimate the true likelihood

by evaluating the likelihood function at the maximum likelihood estimator. However, other

estimators could be used instead. For instance, Roeder and Wasserman (1997) used posterior

means. Similarly, one could consider posterior modes or penalized likelihood methods to stay

closer to a fully Bayesian analysis or simply for regularization; see Fraley and Raftery (2007)

and Baudry and Celeux (2015) for work on Gaussian mixtures. We note that penalization of the

likelihood function would provide a way to address the failure of assumption 1 from Section 4

that may occur in mixture models with unbounded parameter space (Hartigan, 1985).

7.5. When learning coefficients are not known

To our knowledge, sBIC is the first statistical method to make use of mathematical information

about the values of learning coefficients of singular models. The theoretical insights allow us

to obtain (crude) approximations to posterior model probabilities without Monte Carlo in-

tegration. At the same time, the reliance on theory also presents a limitation as the learning

coefficients may not always be known. Previous studies have shown that, when exact values of

learning coefficients are difficult to find, it may still be possible to obtain bounds. For priors that

are bounded from above, a learning coefficient can be trivially bounded by the model dimen-

sion and using dimensions in sBIC recovers the standard BIC (recall remark 2). However, more

interesting bounds can often be found by arguments that are only slightly more complicated

than parameter counting. The usefulness of such bounds was demonstrated in Section 6.

Finally, our sBIC provides strong positive motivation for theoretical studies of learning coef-

ficients. From a statistical perspective, past work had a negative flavour; knowing the values one

could stress just how much smaller they can be than a parameter count. In contrast, new theo-

retical insights now yield new statistical methodology. We expect that this positive motivation

will lead to further work and results on learning coefficients.
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Arnold, V. I., Guseĭn-Zade, S. M. and Varchenko, A. N. (1988) Singularities of Differentiable Maps, Vol. II.
Boston: Birkhäuser.

Azaïs, J.-M., Gassiat, É. and Mercadier, C. (2006) Asymptotic distribution and local power of the log-likelihood
ratio test for mixtures: bounded and unbounded cases. Bernoulli, 12, 775–799.
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