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Outline 
• Motivating examples 

o Two-stage and three-stage experiments 
o Experiment with hard-to-change factors 
o Need for flexible experimental design methods 

• Models 
• Optimal experimental design 

o D-optimal experimental designs 
o I-optimal experimental designs 

• Illustrations 
• Recent work 
• Future research 
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Examples 
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• A 32-run experiment conducted to learn about the 
impact of 5 factors on the anti-bacterial properties of 
the lining of refrigerators 
o gap between electrode and isolator (w) 
o frequency (s) 
o power (t1) 
o gas flow rate (t2) 
o atomizer pressure (t3) 

• The first two factors were hard to change (technician 
required), while the other factors were easy to change 

• Randomizing the experiment is therefore undesirable 

Anti-bacterial surface treatments 
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A split-plot design 



Cheese-making experiment 
(Schoen, Journal of Applied Statistics 1999) 

 
 

 
storage tanks / milk  
 (2 factors) 
 
 
vats / curds (5 factors) 
 
cheeses (3 factors) 
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Cheese-making experiment 
(Schoen, Journal of Applied Statistics 1999) 

 
 

 
whole plots 
 

 
sub-plots 
 
sub-sub-plots 
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Cheese-making experiment 
(Schoen, Journal of Applied Statistics 1999) 

 
 

 
whole-plot factors 
 (or very-hard-to-change 

factors) 

 
sub-plot factors 
 (or hard-to-change factors) 
 

sub-sub-plot factors 
 (or easy-to-change factors) 
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• complex problem 
o 11 factors were investigated simultaneously 
o 7 factors related to polypropylene formulation 
o 4 factors related to gas plasma treatment 

• goal: improve adhesion properties of polypropylene 
o water-based coatings 
o solvent-based coatings 

• responses: total surface tension, lifetime, … 

Polypropylene experiment 

10 



• Stage 1:  
o 20 batches of different polypropylene formulations 

were prepared by Domo PPC 
o Each batch was a large box with many little 

polypropylene plates 
• Stage 2:  

o 100 gas plasma treatments were tested by 
Europlasma on 100 different samples selected from 
the 20 initial batches 

o They could investigate about 5 plasma treatments 
for each batch 

• Classical experimental designs were infeasible 

Polypropylene experiment 
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• 20 different polypropylene formulations 
• 7 two-level factors 

o EPDM 
o homopolymer/copolymer (with/without ethylene) 
o talcum 
o mica 
o lubricant 
o UV-stabiliser 
o EVA (colour) 

• interest was in main effects and all 2-factor interactions 
involving EPDM 

Stage 1 

never used together 
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• 4 factors 
o type of gas (2 activation gases, 1 etching gas) 
o gas flow rate 
o power 
o reaction time 

• quantitative factors were investigated at 3 levels 
• interest in  

o main effects, 2-factor interactions, and (for 
quantitative factors) quadratic effects 

o interactions between plasma treatment factors and 
ingredients of polypropylene formulation 

Stage 2 
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Factors and levels 
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1. the main effects of the seven additives 
2. the six two-factor interactions involving EPDM and each 

of the other additives 
3. the main effects of the gas type, the flow rate, the power 

and the reaction time 
4. all two-factor interactions of these four factors 
5. the quadratic effects of the flow rate, the power and the 

reaction time 
6. all two-factor interactions between the seven additives 

and the four plasma treatment factors 

Model with 66 parameters 
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• the presence of a multi-component constraint (mica 
and tallow cannot both be present) 

• a categorical factor at three levels 
• the use of 20 batches 
• the interest in all the two-factor interactions involving 

EPDM 
• the overall sample size of 100 
• the need to estimate quadratic effects for flow rate, 

power and reaction time 
• creating some nice orthogonal design that 

guarantees a simple analysis is out of the question 
here 

Need for flexible approach 
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Design Stage 1 



Design Stage 2 



Model and design 
selection 
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• The presence of hard-to-change factors in the anti-
bacterial surface treatment experiment results in a 
grouping of experimental tests for which the gap and 
the frequency were held constant 

• In the cheese-making experiment, there are two kinds 
of grouping: 
o The milk tanks produce many cheeses with the same 

settings of the factors applied to milk storage tanks 
o The curds produce several cheeses from one setting of 

the factors applied to the vats 
• In the polypropylene example, all the gas plasma 

treatments applied to samples from the same batch/box 
form a groupd 

Grouping of runs 
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• Main-effects, interaction effects, quadratic effects, … 
• Quantitative experimental factors 
• Qualitative experimental factors 

o Two levels 
o More than two levels 

• Random effects for the various kinds of grouping 
o Capture the correlation between the responses of 

the tests performed within the same group 
o Variance component for every kind of grouping 
o Random intercept model 
o Factor effects do not vary across groups 

Model 
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• Split-plot model for j-th observation in i-th whole plot 
 
 

• Split-split-plot model for k-th observation in the j-th sub-
plot of the i-th whole plot 

Model 

iji
T
ijijY εγ ++= βx

ijkiji
T
ijijkY εδγ +++= βx

22 



• Split-plot model 
 
 

• Split-split-plot model 

Matrix notation 

εZγXβY ++=

εδZγZXβY +++= 21
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( ) IZZZZYV 2
22

2
11

2var εδγ σσσ ++== TT

• Split-plot model 
 
 

• Split-split-plot model 

Variance-covariance matrix 

( ) IZZYV 22var εγ σσ +== T
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• Generalized least squares estimator 
 
 

• Variance-covariance matrix 
 
 

• Information matrix 
 
 

• V is estimated using restricted maximum likelihood 

Model estimation 

( ) YVXXVXβ 111ˆ −−−= TT

( ) ( ) 11ˆvar −−= XVXβ T

XVXM 1−= T
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( )222
δγε σσσ ==

• D-optimality criterion 
o Criterion used in the 2007 Applied Statistics paper 
o Seeks a design that maximizes the determinant of 

the information matrix 
o Minimizes the generalized variance about the model 

parameters 
• I-optimality criterion 

o Seeks a design that minimizes the average variance 
of prediction over all combinations of factor levels 

o Was not explored until Jones & Goos (Journal of 
Quality Technology, 2012) 

• Assumption: 

Design optimality criteria 
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Candidate-set-free 
algorithm 
a.k.a. coordinate-exchange algorithm 



• Three quantitative factors 
o One very-hard-to-change/whole-plot factor 
o One hard-to-change/sub-plot factor 
o One easy-to-change/sub-sub-plot factor 

• Interest in main-effects model 
• Budget allows for 8 tests/runs provided there are only 

o 2 independent settings of the very-hard-to-change 
factor (i.e. two whole plots) 

o 4 independent settings of the hard-to-change factor 
(i.e. four sub-plots) 

• The easy-to-change factor is reset for each test/run 

Illustration for a split-split-plot design 
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Variance-Covariance Matrix 

29 



Starting Design 

WP SP X1 X2 X3 
1 1 0.25 0.37 -0.66 
1 1 0.25 0.37 0.05 
1 2 0.25 -0.69 -0.87 
1 2 0.25 -0.69 -0.72 
2 3 0.57 0.44 -0.59 
2 3 0.57 0.44 0.49 
2 4 0.57 -0.87 -0.74 
2 4 0.57 -0.87 -0.74 

Determinant = 0.026 
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WP SP X1 X2 X3 
1 1 -1.00 1.00 -1.00 
1 1 -1.00 1.00 0.05 
1 2 -1.00 -0.69 -0.87 
1 2 -1.00 -0.69 -0.72 
2 3 0.57 0.44 -0.59 
2 3 0.57 0.44 0.49 
2 4 0.57 -0.87 -0.74 
2 4 0.57 -0.87 -0.74 

Determinant = 1.456 

Design after optimizing row 1 
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WP SP X1 X2 X3 
1 1 -1.00 1.00 -1.00 
1 1 -1.00 1.00 1.00 
1 2 -1.00 -0.69 -0.87 
1 2 -1.00 -0.69 -0.72 
2 3 0.57 0.44 -0.59 
2 3 0.57 0.44 0.49 
2 4 0.57 -0.87 -0.74 
2 4 0.57 -0.87 -0.74 

Determinant = 3.182 

Design after optimizing row 2 
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WP SP X1 X2 X3 
1 1 -1.00 1.00 -1.00 
1 1 -1.00 1.00 1.00 
1 2 -1.00 -1.00 1.00 
1 2 -1.00 -1.00 -0.72 
2 3 0.57 0.44 -0.59 
2 3 0.57 0.44 0.49 
2 4 0.57 -0.87 -0.74 
2 4 0.57 -0.87 -0.74 

Determinant = 6.46 

Design after optimizing row 3 
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WP SP X1 X2 X3 
1 1 -1.00 1.00 -1.00 
1 1 -1.00 1.00 1.00 
1 2 -1.00 -1.00 1.00 
1 2 -1.00 -1.00 -1.00 
2 3 0.57 0.44 -0.59 
2 3 0.57 0.44 0.49 
2 4 0.57 -0.87 -0.74 
2 4 0.57 -0.87 -0.74 

Determinant = 7.20 

Design after optimizing row 4 
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WP SP X1 X2 X3 
1 1 -1.00 1.00 -1.00 
1 1 -1.00 1.00 1.00 
1 2 -1.00 -1.00 1.00 
1 2 -1.00 -1.00 -1.00 
2 3 1.00 1.00 -1.00 
2 3 1.00 1.00 0.49 
2 4 1.00 -0.87 -0.74 
2 4 1.00 -0.87 -0.74 

Determinant = 16.777 

Design after optimizing row 5 
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WP SP X1 X2 X3 
1 1 -1.00 1.00 -1.00 
1 1 -1.00 1.00 1.00 
1 2 -1.00 -1.00 1.00 
1 2 -1.00 -1.00 -1.00 
2 3 1.00 1.00 -1.00 
2 3 1.00 1.00 1.00 
2 4 1.00 -0.87 -0.74 
2 4 1.00 -0.87 -0.74 

Determinant = 19.86 

Design after optimizing row 6 
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WP SP X1 X2 X3 
1 1 -1 1 -1 
1 1 -1 1 1 
1 2 -1 -1 1 
1 2 -1 -1 -1 
2 3 1 1 -1 
2 3 1 1 1 
2 4 1 -1 1 
2 4 1 -1 -0.74 

Determinant = 26.19 

Design after optimizing row 7 
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WP SP X1 X2 X3 
1 1 -1 1 -1 
1 1 -1 1 1 
1 2 -1 -1 1 
1 2 -1 -1 -1 
2 3 1 1 -1 
2 3 1 1 1 
2 4 1 -1 1 
2 4 1 -1 -1 

Determinant = 27.86 

Final Design 
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Proof-of-concept 
example 
• 2 hard-to-change or 

whole-plot factors w1 
and w2  

• 5 easy-to-change or 
sub-plot factors s1-s5  
 



Diagonal information matrix 
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D-Optimal Design Stage 1 



D-optimal Design Stage 2 



• Simultaneous optimization of whole-plot, sub-plot and 
sub-sub-plot factors’ levels 
o The candidate-set-free or coordinate-exchange 

algorithm’s computing time does not increase 
exponentially with the number of factors 

o This is unlike the point-exchange algorithm which 
requires a candidate set 

• Trinca & Gilmour (Technometrics, 2001) sequentially 
optimize the whole-plot, sub-plot and sub-sub-plot 
factors’ levels 

• Trinca & Gilmour (Technometrics, 2015) present an 
improved version and beat the design of Jones & Goos 
(2007) by 1% 

Algorithms 
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Discussion and recent 
developments 



• Using the principles of optimal experimental design, it 
is possible to conduct experiments to study many 
factors 

• Optimal experimental design also works for split-plot 
and split-split-plot experiments 
o Useful whenever there are hard- or very-hard-to-

change factors 
o Useful whenever experiments span multiple steps of 

a production process 
• Which algorithm you use for seeking optimal 

experimental designs is of secondary importance 
• Do not be afraid to leave the well-paved path of 

orthogonal 2-level designs if necessary 

Discussion 



• Increasingly, Bayesian approaches are used to cope 
with the uncertainty about the variance components 

• A composite criterion has been proposed to account for 
the fact that a proper analysis of split-plot and split-
split-plot data requires estimating the variance 
components too 

• A lack-of-fit test has been proposed for split-plot and 
split-split-plot data based on pure error estimates of the 
variance components 

• A local search algorithm has been presented to 
simultaneously search for D- and I-optimal designs 

Recent developments 
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Thank you for your 
attention ! 
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