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Literature related to this webinar

 Reason why | deliver this webinar

Jones, B., Goos, P., 2007. A candidate-set-free algorithm for generating
D-optimal split-plot designs, Applied Statistics, 56, 347-364.

e Earlier work

Goos, P., Vandebroek, M., 2003. D-optimal split-plot designs with given
numbers and sizes of whole plots, Technometrics, 45, 235-245.

* Follow-up work

Jones, B., Goos, P., 2009. D-optimal design of split-split-plot
experiments, Biometrika, 96, 67-82.

Arnouts, H., Goos, P., Jones, B., 2013. Three-stage industrial strip-plot
experiments, Journal of Quality Technology, 45, 1-17
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Outline

* Motivating examples
o Two-stage and three-stage experiments
o Experiment with hard-to-change factors
o Need for flexible experimental design methods

e Models

 Optimal experimental design
o D-optimal experimental designs
o l-optimal experimental designs

* |llustrations
e Recent work
e [Future research

B ) o



Examples
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Anti-bacterial surface treatments

* A 32-run experiment conducted to learn about the
Impact of 5 factors on the anti-bacterial properties of
the lining of refrigerators

o gap between electrode and isolator (w)
o frequency (S)

o power (t,)

o gas flow rate (t,)

o atomizer pressure (t,)

* The first two factors were hard to change (technician
required), while the other factors were easy to change

 Randomizing the experiment is therefore undesirable
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Cheese-making experiment
(Schoen, Journal of Applied Statistics 1999)

storage tanks / milk
(2 factors)

SN
J Lmj vats / curds (5 factors)

2222 cheeses (3 factors)
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Cheese-making experiment
(Schoen, Journal of Applied Statistics 1999)

whole plots
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Cheese-making experiment
(Schoen, Journal of Applied Statistics 1999)

J/ij
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whole-plot factors

(or very-hard-to-change
factors)

sub-plot factors
(or hard-to-change factors)

sub-sub-plot factors
(or easy-to-change factors)

B ) o



Polypropylene experiment

e complex problem
o 11 factors were investigated simultaneously
o 7 factors related to polypropylene formulation
o 4 factors related to gas plasma treatment
e goal: improve adhesion properties of polypropylene
o water-based coatings
o Solvent-based coatings
e responses: total surface tension, lifetime, ...
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Polypropylene experiment

e Stage 1:

o 20 batches of different polypropylene formulations
were prepared by Domo PPC

o Each batch was a large box with many little
polypropylene plates

e Stage 2:

o 100 gas plasma treatments were tested by
Europlasma on 100 different samples selected from
the 20 initial batches

o They could investigate about 5 plasma treatments
for each batch

* Classical experimental designs were infeasiblew
11



Stage 1

e 20 different polypropylene formulations
e 7 two-level factors

o EPDM
o homopolymer/copolymer (with/without ethylene)
o talcum
_ never used together
o Mmica
o lubricant

o UV-stabiliser
o EVA (colour)

e |nterest was in main effects and all 2-factor interactions
Involving EPDM
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Stage 2

e 4 factors
o type of gas (2 activation gases, 1 etching gas)
o gas flow rate
o power
o reaction time
e guantitative factors were investigated at 3 levels
* Interestin

o Mmain effects, 2-factor interactions, and (for
guantitative factors) quadratic effects

o Interactions between plasma treatment factors and
Ingredients of polypropylene formulation
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Factors and levels

Factor Range or level

EPDM (wq) 0-15%

Ethylene (w5) 0-10%

Talc (w3) 0-20%

Mica (wg4) 0-20%

Lubricant (ws) 0-1.5%

UV stabilizer (wg) 0-0.8%

Ethylene vinyl acetate (w7)  0-1.5%

Flow rate (s1) 1000-2000 sccm

Power (s7) 500-2000 W

Reaction time (s3) 2—15 min

Gas type (s4) Etching gas
Activation gas 1
Activation gas 2
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Model with 66 parameters

1. the main effects of the seven additives

2. the six two-factor interactions involving EPDM and each
of the other additives

3. the main effects of the gas type, the flow rate, the power
and the reaction time

4. all two-factor interactions of these four factors

5. the quadratic effects of the flow rate, the power and the
reaction time

6. all two-factor interactions between the seven additives
and the four plasma treatment factors
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Need for flexible approach

* the presence of a multi-component constraint (mica
and tallow cannot both be present)

e a categorical factor at three levels
* the use of 20 batches

* the interest in all the two-factor interactions involving
EPDM

* the overall sample size of 100

* the need to estimate quadratic effects for flow rate,
power and reaction time

e creating some nice orthogonal design that
guarantees a simple analysis is out of the question

here 16 w



Design Stage 1
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Design Stage 2
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Model and design
selection
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Grouping of runs

 The presence of hard-to-change factors in the anti-
bacterial surface treatment experiment results in a
grouping of experimental tests for which the gap and
the frequency were held constant

* |n the cheese-making experiment, there are two kinds
of grouping:
o The milk tanks produce many cheeses with the same
settings of the factors applied to milk storage tanks

o The curds produce several cheeses from one setting of
the factors applied to the vats

* |n the polypropylene example, all the gas plasma
treatments applied to samples from the same batch/box

form a groupd ; w



Model

* Main-effects, interaction effects, quadratic effects, ...
* Quantitative experimental factors
* Qualitative experimental factors
o Two levels
o More than two levels
 Random effects for the various kinds of grouping

o Capture the correlation between the responses of
the tests performed within the same group

o Variance component for every kind of grouping
o Random intercept model
o Factor effects do not vary across groups

| o



Model

e Split-plot model for j-th observation in i-th whole plot
T
=X,B+y, +¢,

e Split-split-plot model for k-th observation in the j-th sub-
plot of the i-th whole plot

B+ Y+ 0, +&y

yk
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Matrix notation
e Split-plot model

Y=XB+2Zy+€&
e Split-split-plot model

Y=XB+ZYy+Z,0+E€
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Variance-covariance matrix
e Split-plot model

V=var(Y)=02Z" + 5’1
e Split-split-plot model

V=var(Y)=022Z +0,2,Z) +0.1
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Model estimation

 Generalized least squares estimator

~

B=(X"V'X)'X'V'Y

e \ariance-covariance matrix

~

var(B)= (X"v- X"

Information matrix
M=X'V'X

* Vs estimated using restricted maximum likelihood
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Design optimality criteria

e D-optimality criterion
o Criterion used in the 2007 Applied Statistics paper

o Seeks a design that maximizes the determinant of
the information matrix

o Minimizes the generalized variance about the model
parameters

e [-optimality criterion
o Seeks a design that minimizes the average variance
of prediction over all combinations of factor levels

o Was not explored until Jones & Goos (Journal of
Quality Technology, 2012)

 Assumption: aﬁzdﬁ(—aél w



Candidate-set-free
algorithm

a.k.a. coordinate-exchange algorithm
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lllustration for a split-split-plot design

 Three quantitative factors
o One very-hard-to-change/whole-plot factor
o One hard-to-change/sub-plot factor
o One easy-to-change/sub-sub-plot factor
* Interest in main-effects model
* Budget allows for 8 tests/runs provided there are only

o 2 independent settings of the very-hard-to-change
factor (i.e. two whole plots)

o 4 independent settings of the hard-to-change factor
(.e. four sub-plots)

* The easy-to-change factor is reset for each test/run
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Starting Design

Determinant = 0.026
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Design after optimizing row 1

Determinant = 1.456

WP SP X1 X2 X3
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Design after optimizing row 2

Determinant = 3.182
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Design after optimizing row 3

Determinant = 6.46

WP SP X1 X2 X3

-1.00
1.00
1.00
-0.72
-0.59
0.49
-0.74
-0.74




Design after optimizing row 4

Determinant = 7.20
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Design after optimizing row 5

Determinant = 16.777
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Design after optimizing row 6

Determinant = 19.86
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Design after optimizing row 7

Determinant = 26.19

WP SP X1 X2 X3




Final Design

Determinant = 27.86
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Diagonal information matrix
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Optimal Design Stage 1

D
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D-optimal Design Stage 2
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Algorithms

e Simultaneous optimization of whole-plot, sub-plot and
sub-sub-plot factors’ levels

o The candidate-set-free or coordinate-exchange
algorithm’s computing time does not increase
exponentially with the number of factors

o This is unlike the point-exchange algorithm which
requires a candidate set

* Trinca & Gilmour (Technometrics, 2001) sequentially
optimize the whole-plot, sub-plot and sub-sub-plot
factors’ levels

 Trinca & Gilmour (Technometrics, 2015) present an
Improved version and beat the design of Jones & Goos

(2007) by 1% ; w



Discussion and recent
developments
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Discussion

* Using the principles of optimal experimental design, it
IS possible to conduct experiments to study many
factors

* Optimal experimental design also works for split-plot
and split-split-plot experiments
o Useful whenever there are hard- or very-hard-to-

change factors

o Useful whenever experiments span multiple steps of
a production process

 Which algorithm you use for seeking optimal
experimental designs is of secondary importance

* Do not be afraid to leave the well-paved path of

orthogonal 2-level designs if necessary w



Recent developments

* Increasingly, Bayesian approaches are used to cope
with the uncertainty about the variance components

* A composite criterion has been proposed to account for
the fact that a proper analysis of split-plot and split-
split-plot data requires estimating the variance
components too

* A lack-of-fit test has been proposed for split-plot and
split-split-plot data based on pure error estimates of the
variance components

* Alocal search algorithm has been presented to
simultaneously search for D- and I-optimal designs
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Thank you for your
attention !
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