Subgroup Selection in Adaptive Signature Designs of Confirmatory Clinical Trials

Zhiwei Zhang

Department of Statistics
University of California, Riverside
zhiwei.zhang@ucr.edu

Joint work with Meijuan Li (FDA), Min Lin (FDA), Guoxing Soon (FDA), Tom Greene (U. Utah), and Changyu Shen (Harvard); no endorsement by FDA
Outline

- Introduction
- Formulation
- Subgroup selection
- Treatment effect estimation
- Examples
- Summary
Treatment effects are frequently heterogeneous.

A clinically meaningful treatment benefit is often limited to a subpopulation of patients (e.g., Simon, 2008, 2010).

If a promising subpopulation is known at the design stage, this knowledge can be used to
- plan a subgroup analysis in a broad eligibility trial, or
- restrict enrollment in a targeted trial.

If unknown at the design stage, a target subpopulation can be developed in a data-driven manner
- at the end of a broad eligibility trial (adaptive signature design; ASD), or
- at an interim analysis (adaptive enrichment design).
Our focus is on subgroup selection in ASDs (Freidlin and Simon, 2005; Freidlin, Jiang and Simon, 2010), and we also consider treatment effect estimation for the selected subgroup.

Our objective is to maximize the power for detecting a positive treatment effect in the selected subgroup or, more generally, the expected gain based on a specified utility function.

The latter formulation allows investigators to take into account the size of the selected subgroup as well as the clinical value of demonstrating treatment efficacy for the selected subgroup.

Our objective is not to find an optimal treatment regime that maximizes the expected outcome for the entire population.
Our approach is based on a simple and general characterization of the optimal subgroup.

For a binary outcome, this characterization takes the form of a halfspace in terms of covariate-specific response rates (in both treatment groups) and utility (if specified).

Motivated by this characterization, we propose a subgroup selection procedure which consists of the following three steps:

1. Estimate the covariate-specific response rate in each treatment group;
2. Estimate the expected gain for each candidate halfspace defined by a vector of coefficients and the estimates from Step 1;
3. Choose the halfspace with the largest estimate of the expected gain.

A cross-validation approach can be used to estimate the treatment effect for the chosen subgroup.

A bootstrap procedure can be used to make inference about the treatment effect for the chosen subgroup.
An ASD is just an “all-comer” clinical trial with a prospective plan for testing treatment efficacy for a data-driven subgroup of patients.

Unlike other adaptive designs, an ASD does not (necessarily) involve an interim analysis; it is adaptive in the selection of patients for a possible subgroup analysis.

Usually, an ASD includes a test of overall treatment efficacy (at level α_1) as well as a test of treatment efficacy for a data-driven subgroup (at level α_2), where α_1 and α_2 are chosen to control the familywise error rate.

Here we restrict attention to ASDs without a test of overall treatment efficacy.
Consider an “all-comer” clinical trial with randomized treatment T (1 experimental; 0 control), primary outcome Y, and baseline covariates X (for subgroup selection).

The question is how to choose a subgroup $A \subset \mathcal{X}$ and test the associated hypothesis on the basis of $\{(X_i, T_i, Y_i) : i = 1, \ldots, n\}$.

If the investigator is only concerned about power, then an optimal choice of A is a maximizer of $\text{pow}(A)$.

There may, however, be additional considerations concerning the size and content of A:

- It is more desirable to demonstrate treatment efficacy for a large subpopulation (say 90%) than for a small one (say 10%).
- Successful demonstration of treatment efficacy is more important for a subgroup of patients with no alternative treatments than for a subgroup with many treatment options.
Such considerations can be accommodated using a utility function $u : \mathcal{X} \rightarrow [0, \infty)$. If a subset A tests significant, the realized gain is

$$u(A) = \int_A u(x) dF(x),$$

where F is the distribution of X. For a specified utility function, an optimal choice of A is a maximizer of the expected gain $\gamma(A) = u(A) \cdot \text{pow}(A)$.

Because the exact power may be difficult to calculate, we work with an approximation based on asymptotic normality:

$$g(A) = u(A) \cdot \text{pow}(A).$$

We will attempt to find a subset A that maximizes $g(A)$ and estimate the treatment effect in the chosen subpopulation, which could be the entire population. Since $u(A)$ is already taken into account, there is no need for a separate test of overall treatment efficacy.
Subgroup Selection

- To fix ideas, suppose \(Y \) is binary (1 success; 0 failure), and write
 \[
 p_t(x) = P(Y = 1| T = t, X = x) \quad t = 0, 1.
 \]

- We assume that \(X \) has at least one continuous component and that the functions \((u, p_0, p_1)\) are continuous in the continuous components of \(X \).

- Under appropriate conditions, a subset \(A_{opt} \) that maximizes \(g(A) \) consists of \(x \in \mathcal{X} \) such that
 \[
 (1, u(x), p_0(x), p_1(x))c(A_{opt}) \leq 0,
 \]
 where \(c(A_{opt}) \) is a 4-vector that depends on \(A_{opt} \) but not on \(x \).

- If the utility function is constant or if there is no utility function (so the objective function is simply \(\tilde{pow}(A) \)), the same characterization of \(A_{opt} \) applies after removing \(u(x) \) from the above expression.
Motivated by this characterization, we consider the class of subsets \(A = \{ A(c) : \|c\| = 1 \} \), where

\[
A(c) = \{ x \in \mathcal{X} : (1, u(x), \hat{p}_0(x), \hat{p}_1(x))c \leq 0 \},
\]

\(\hat{p}_t(x) \) is an estimate of \(p_t(x) \) based on a model for \(P(Y = 1|X, T) \), and the unit norm constraint on \(c \) is for uniqueness.

This approach is insensitive to any collinearity in \(X \).

For a given \(c \), an estimate of \(g(A(c)) \) can be obtained by substituting estimates of \((F(A), u(A), p_0(A), p_1(A)) \), where \(A = A(c) \) is considered fixed and \(p_t(A) = P(Y = 1|T = t, X \in A), t = 0, 1 \).

- \(\hat{F}(A) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \in A) \), \(\hat{u}(A) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \in A)u(X_i) \)
- \(\hat{p}_t^{\text{emp}}(A) = \frac{\sum_{i=1}^{n} I(X_i \in A, T_i = t, Y_i = 1)}{\sum_{i=1}^{n} I(X_i \in A, T_i = t)} \)
- \(\hat{p}_t^{\text{aug}}(A) = \hat{p}_t^{\text{emp}}(A) - \frac{\sum_{i=1}^{n} I(X_i \in A)\{I(T_i = t) - \hat{\omega}_t(A)\} \hat{p}_t(X_i)}{\sum_{i=1}^{n} I(X_i \in A, T_i = t)} \), where \(\hat{\omega}_t(A) \) is the proportion of subjects in \(A \) that receive treatment \(t \).
Our proposal is to estimate A_{opt} by $\hat{A}_{\text{opt}} = A(\hat{c}_{\text{opt}})$, where \hat{c}_{opt} maximizes the estimate of $g(A(c))$ over the unit sphere.

This is a low-dimensional maximization problem, which can be solved using standard techniques (e.g., grid search).

If $\hat{p}_t(x)$ estimates $p_t(x)$ consistently, then we can expect \hat{c}_{opt} and \hat{A}_{opt} to approach $c(A_{\text{opt}})$ and A_{opt} respectively in large samples.

If $\hat{p}_t(x)$ is inconsistent for $p_t(x)$ (e.g., due to model misspecification), then \hat{A}_{opt} estimates a local optimum (within the class A).

A severe departure of \hat{A}_{opt} from A_{opt} could be detected by comparing \hat{c}_{opt} with $c(\hat{A}_{\text{opt}})$.
Under appropriate conditions, $\hat{p}_t(\hat{A}_{opt}) - p_t(\hat{A}_{opt}) = o_p(1)$, and $
abla{n} \{\hat{p}_t(\hat{A}_{opt}) - p_t(\hat{A}_{opt})\}$ is asymptotically normal.

Thus, for asymptotic inference, one can largely ignore the fact that \hat{A}_{opt} and $\{\hat{p}_t(A) : A \in A\}$ are obtained from the same set of data.

In finite samples, however, a selection bias can arise when the same sample is used to develop \hat{A}_{opt} and estimate the treatment effect in this subgroup.

A cross-validation approach can be used to remove or reduce the selection bias.
• **K-fold cross-validation:**
 • Partition the study cohort randomly into a specified number, say K, of subsamples that are roughly equal in size.
 • For each $k \in \{1, \ldots, K\}$, we use the kth subsample as the validation sample and combine the other subsamples into a training sample.
 • From the training sample we obtain $\hat{A}^{(-k)}_{opt} = \arg\max_{A \in A^{(-k)}} \hat{g}^{(-k)}(A)$ using the exact same method for obtaining \hat{A}_{opt}.
 • Next, we apply $\hat{A}^{(-k)}_{opt}$ to the validation sample and obtain $\hat{p}^{(k)}_{t}(\hat{A}^{(-k)}_{opt})$, where $\hat{p}^{(k)}_{t}(\cdot)$ is based on the validation sample alone.
 • The final cross-validated estimator of $p_{t}(\hat{A}_{opt})$ is given by
 \[
 \hat{p}^{cv}_{t}(\hat{A}_{opt}) = \frac{1}{K} \sum_{k=1}^{K} \hat{p}^{(k)}_{t}(\hat{A}^{(-k)}_{opt}).
 \]

• Inference on $p_{1}(\hat{A}_{opt}) - p_{0}(\hat{A}_{opt})$ can be based on nonparametric bootstrap standard errors and confidence intervals.
The Magnesium in Coronaries (MAGIC) study is a randomized clinical trial that investigated, in high risk patients with ST-elevation myocardial infarction, the effect of supplemental administration of intravenous magnesium on short-term mortality.

The MAGIC study enrolled 6213 patients, who were randomized 1 : 1 to magnesium sulphate or matching placebo.

The primary endpoint was all-cause mortality within 30 days of randomization.

The observed mortality rate was 15.3% in the magnesium group and 15.2% in the placebo group, with an odds ratio of 1.0 (95% CI: 0.9–1.2).

No benefit or harm of magnesium was observed in 8 pre-specified and 15 exploratory subgroup analyses.
In our retrospective analysis, the baseline covariate vector consists of age, gender, systolic blood pressure, heart rate, a simple risk index, a modified TIMI score, and nine other covariates.

Three subjects with missing covariate data are excluded from our analysis.

We estimate \(p_t(x) \) under a logistic regression model and estimate \(p_t(A) \) with the augmented estimator \(\hat{p}_t^{\text{aug}}(A) \).

Our analysis is based on superiority hypotheses \((H_0 : p_1(A) \leq p_0(A) \text{ vs } H_1 : p_1(A) > p_0(A)) \), one-sided \(\alpha = 0.025 \), and a constant utility function, and involves grid search and 20-fold cross-validation.
<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Pt. Est. (%)</th>
<th>Std. Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naive</td>
<td>CV</td>
</tr>
<tr>
<td>$F(\hat{A}_{opt})$</td>
<td>63.1</td>
<td>63.8</td>
</tr>
<tr>
<td>$\tilde{\text{pow}}(\hat{A}_{opt})$</td>
<td>73.8</td>
<td>0.7</td>
</tr>
<tr>
<td>$g(\hat{A}_{opt})$</td>
<td>46.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$p_0(\hat{A}_{opt})$</td>
<td>86.7</td>
<td>87.5</td>
</tr>
<tr>
<td>$p_1(\hat{A}_{opt})$</td>
<td>89.4</td>
<td>86.9</td>
</tr>
<tr>
<td>$\delta_p(\hat{A}_{opt})$</td>
<td>2.7</td>
<td>-0.5</td>
</tr>
</tbody>
</table>
Example 2 (HEMO)

- The HEMO study is a randomized clinical trial that evaluated the effects of the dose of dialysis and the level of flux of the dialyzer membrane on mortality and morbidity among patients undergoing maintenance hemodialysis.
- The HEMO study enrolled 1846 patients undergoing thrice-weekly dialysis and randomized them to a standard or high dose of dialysis (1:1) and to a low-flux or high-flux dialyzer (1:1) under a two-by-two factorial design.
- The primary endpoint was time to death from any cause, which was not significantly influenced by the dose or flux assignment:
 - the hazard ratio for high versus standard dose was estimated to be 0.96 (95% CI: 0.84–1.10; $p = 0.53$);
 - the hazard ratio for high versus low flux was estimated to be 0.92 (95% CI: 0.81–1.05; $p = 0.23$).
- However, possible interactions were identified between dose and sex (unadjusted $p = 0.01$) and between flux and prior years of dialysis (≤ 3.7 years versus > 3.7 years; unadjusted $p = 0.005$).
The corresponding subgroup analyses suggested that women might benefit from a high dose of dialysis and that patients with longer history of dialysis might benefit from high flux.

Although definitive answers to these questions would require pre-planned analyses, we present a retrospective analysis here mainly to illustrate the proposed methodology.

The treatment of interest is the level of flux (1 high; 0 low), and the baseline covariate vector consists of the same seven covariates pre-specified for subgroup analyses and also included in the primary (Cox regression) analysis.

We work with survival status (1 alive; 0 dead) at 3 years post-randomization as the outcome variable, and restrict attention to the 1414 subjects who were randomized at least 3 years prior to the administrative end of the study.

Our analysis of this example is similar to the previous one except for the use of one-sided $\alpha = 0.05$ and 10-fold cross-validation.
<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Pt. Est. (%)</th>
<th>Std. Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naive</td>
<td>CV</td>
</tr>
<tr>
<td></td>
<td>Naive</td>
<td>CV</td>
</tr>
<tr>
<td>$F(\hat{A}_{opt})$</td>
<td>76.2</td>
<td>12.5</td>
</tr>
<tr>
<td>$\tilde{\text{pow}}(\hat{A}_{opt})$</td>
<td>63.9</td>
<td>9.6</td>
</tr>
<tr>
<td>$g(\hat{A}_{opt})$</td>
<td>48.7</td>
<td>13.6</td>
</tr>
<tr>
<td>$p_0(\hat{A}_{opt})$</td>
<td>65.9</td>
<td>3.5</td>
</tr>
<tr>
<td>$p_1(\hat{A}_{opt})$</td>
<td>71.6</td>
<td>3.4</td>
</tr>
<tr>
<td>$\delta_p(\hat{A}_{opt})$</td>
<td>5.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Summary

- This work provides new insights and methods for ASDs:
 - A simple characterization of the optimal subgroup
 - A three-step procedure for subgroup selection
 - A cross-validation procedure for treatment effect estimation

- Advantages of the proposed methodology:
 - No need to perform two separate tests and split alpha
 - Insensitivity to collinearity in X
 - Use of AIPW to incorporate covariate information and improve precision

- The main ideas generalize easily to other types of outcome variables.