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Higher Certificate, Paper I, 2003.  Question 1 
 
(i) (a) Any of 0, 1, …, 9 can occur in each of the six positions, so the number 

is 106 = 1000000. 
 
 (b) 10 × 9 × 8 × 7 × 6 × 5  =  151200, since no repetition is allowed. 
 

[Alternatively, ( )
10! 10!

10 6 ! 4!
=

−
 as above.] 

 

 (c) There are 
10
6

 
 
 

 choices of six different digits from ten, each of which 

can be used in only one of its possible orders.  So the number is 
 

 
10 10! 210
6 6!4!

 
= = 

 
 . 

 

(d) Here there are 
10
3

 
 
 

 choices of digits, for each of which there are 

6! 90
2!2!2!

=  orders, so the number is 
10

90
3

 
× 

 
 = 10800. 

 
(ii) (a) There are 3! = 6 possible orders for the first three digits, and 1 order 

(the reverse order of the first three digits) for the last three.  So there 
are 6 codes. 

 
 (b) If one digit is used 4 times in a palindromic code, another must be used 

twice.  These digits may be chosen in 3 and 2 ways respectively, i.e. in 
6 ways for the pair.  Once the digits have been chosen, only 3 patterns 
are possible;  for example, say the digits are 1 and 2, then the possible 
patterns are 1 1 2 2 1 1,  1 2 1 1 2 1  and  2 1 1 1 1 2.  So the total 
number of codes is 6 × 3  =  18. 

 
 (c) There are 3 choices of digit and only one possible pattern for each;  so 

there are 3 codes. 
 

(iii) Using the patterns from part (ii), there are 
10
3

 
 
 

 choices of digits for (a), each 

giving 6 codes, i.e. 
10
3

 
 
 

 × 6 = 720 altogether.  For (b), there are 
10
2

 
 
 

 choices 

of digits, i.e. 45, with 3 patterns as above, in which the two digits can be used 
in 2 ways (4 of 1 and 2 of 2 or vice versa), giving 45 × 3 × 2 = 270 ways.  And 
(c) can occur in 10 ways (because any digit can be used 6 times).  Thus the 
total is 720 + 270 + 10 = 1000 ways. 

 
ALTERNATIVELY, the first three positions may each be filled in 10 ways, 
and then the whole sequence is determined, so there are 103 = 1000 ways. 



 

 

Higher Certificate, Paper I, 2003.  Question 2 
 

 ( ) ( ) ( )2 1 1
3 2 4

P A P B P C= = =  

(i) (a) By the given independence, 

( ) ( ) ( ) ( ) 2 1 1 11 1
3 2 4 4

P A B C P A P B P C   ∩ ∩ = = − − =  
  

 . 

 

 (b) ( ) ( ) ( )( )
( )

( )
( )

P A C A B P A C B
P A C A B

P A B P A B

∩ ∩ ∩ ∩ ∩
∩ ∩ = =

∩ ∩
 

    ( )
1
4

2 1
3 2

3
1 4

= =
−

 . 

 
(ii) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using pairwise independence, the value of ( )P A B∩  is P(A)P(B), etc, and 
hence the values 1

3 x− , 1
8 x−  and 1

6 x−  are found.  The others follow using 
P(A), P(B) and P(C). 

 

 (a) ( ) 1
6

P A B C x∩ ∩ = +   from the diagram. 
 

 (b) ( ) ( ) ( )( )
( )

( )
( )

P A C A B P A C B
P A C A B

P A B P A B

∩ ∩ ∩ ∩ ∩
∩ ∩ = =

∩ ∩
 

        ( ) ( )
1
6

1 1
6 6

13
2

x x
x x

+= = +
+ + −

 . 

 (c) ( ) 19
24

P A B C x∪ ∪ = +  . 
 

 Since all probabilities must lie in [0,1], we have 1
24x ≥  and 1

8x ≤ , i.e. 
1 1
24 8

x≤ ≤  . 

1
6 x+  1

3 x− 1
24 x+

x 1
8 x−1

6 x−

1
24x −

A B 

C 



 

 

Higher Certificate, Paper I, 2003.  Question 3 
 
 
(i) (a) X + YA  is  N(10 + 15 , 12 + 16)  i.e.  N(25, 28). 
 
 (b) X + YB  is  N(10 + 12 , 12 + 9)  i.e.  N(22, 21). 
 
 
(ii) If X is the same for both, we require P(YA < YB), i.e. P(YA – YB < 0). 
 

YA – YB  is  N(15 – 12 , 16 + 9)  i.e.  N(3, 25). 
 

( ) 0 30
5A BP Y Y − − < = Φ  

 
 where (as usual) Φ denotes the cdf of the N(0, 1) 

distribution.  From tables Φ(–0.6) = 1 – Φ(0.6) = 0.2743. 
 
 
(iii) Writing  WA = X + YA  and  WB = X + YB, we require P(WA < WB), i.e. 

P(WA – WB < 0). 
 
 WA – WB  is  N(25 – 22 , 28 + 21)  i.e.  N(3, 49). 
 

 ( ) 0 30
7A BP W W − − < = Φ  

 
 = 3

7
 Φ − 
 

 = 0.3341. 

 
 

(iv) 28 21is N 25, and is N 22,
16 16A BW W   

   
   

. 

 

Let A BU W W= − ;  then U is 49N 3,
16

 
 
 

, and we require 

 

( ) ( )7
4

0 3 120 1.7143
7

P U
 −  < = Φ = Φ − = Φ −   

  
 = 0.0432. 

 



 

 

Higher Certificate, Paper I, 2003.  Question 4 
 
 ( ) ( )2 1 , 0 1f x kx x x= − ≤ ≤  

 
 

(i) ( )
13 41 2 3

0
0

1 1
3 4 3 4 12
x x kk x x dx k k

   − = − = − =     
∫  , 

 
which must be equal to 1.  So k = 12. 

 
 

(ii) ( ) ( ) ( )2 3 212 12 24 36 12 2 3
d f x d x x x x x x

dx dx
= − = − = −  

 
which is zero for 2 – 3x = 0 [and for x = 0, but this is clearly not the mode (i.e. 
not the maximum of f (x)], i.e. x = 2/3.  To check that this is the maximum (i.e. 
the mode), we can consider the second derivative:- 

 
( )2

2 24 72
d f x

x
dx

= − , which is clearly < 0 at x = 2/3. 

 
Hence the mode is at x = 2/3, and the graph of f (x) is as shown.  [NOTE.  The 
curve should of course appear smooth;  it might not do so, due to the limits of 
electronic reproduction.] 
 
[At the mode, f (x)  =  12(2/3)2(1/3)  =  16/9.] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Continued on next page 
 

f (x) 

x
1



 

 

(iii) ( ) ( ) ( )
14 51 1 3 4

0 0
0

12 12
4 5
x xE X x f x dx x x dx

 
= = − = − 

 
∫ ∫  

 
1 1 12 312
4 5 20 5

 = − = = 
 

 . 

 

( ) ( ) ( )
15 61 12 2 4 5

0 0
0

12 12
5 6
x xE X x f x dx x x dx

 
= = − = − 

 
∫ ∫  

 
1 1 12 212
5 6 30 5

 = − = = 
 

 . 

 

So  Var(X)  =  E(X2) – [E(X)]2  =  2 9
5 25

−   =  1
25

 . 

 
 

(iv) The cumulative distribution function is ( ) ( )2 3

0
12

x
F x u u du= −∫  

( )
3 4

3 4 3

0

12 4 3 4 3 , for 0 1
3 4

x
u u x x x x x

  
= − = − = − ≤ ≤  

  
 . 

 
The mean is 3

5  and the standard deviation is 1
5 .  We require ( )2 4

5 5P X< < .  
This can be found by integrating the pdf between 2

5  and 4
5  or, directly, as 

     
3 34 2 4 8 2 14 64 8 8 14 16

5 5 5 5 5 5 625 25
F F × − ×           − = − = =           
           

 . 

 
 



 

 

Higher Certificate, Paper I, 2003.  Question 5 
 

 Poisson distribution:   ( )
!

xef x
x

λλ−

=  .         Expectation = variance = λ. 

 
(i) λ = 0.5 :     f (0) = e-0.5 = 0.6065,    f (1) = 0.3033,    f (2) = 0.0758, … . 
 Expectation  =  variance  =  0.5. 
 

λ = 2 :     f (0) = 0.1353,    f (1) = 0.2707,    f (2) = 0.2707,    f (3) = 0.1804, 
f (4) = 0.0902, … .     Expectation = variance = 2. 

 
 Sketches are as shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(ii) Likelihood L = 
1

n

i=
∏

 
Taking logarithms 

 

(log L n xλ= − + Σ
 

Differentiating, ld
d

1

1ˆ
n

ML i
i

x
n

λ
=

= =∑
a maximum. 

 
The central limit
(approximately) 

 

 P λ


−


 
Continued on next page 

f (x) f (x) 

 x 0 2 … 
x
 0 2 4 …
! !

i ix xn

i i

e e
x x

λ λλ λΣ− −

=
Π

 . 

to base e, 

) ( )log log !i ixλ − Π  . 

og ixL n
λ λ

Σ= − + ;  setting this eq

x .  We have 
2

2

log ixd L
d λλ 2

Σ= − <

 theorem gives (approx)X ∼

1.96 1.96X
n n
λ λλ


≤ ≤ + =



ual to 0 gives the solution 

0 , confirming that this is 

( )N , /nλ λ , so we have 

0.95  



 

 

or 

 1.96 1.96 0.95P X X
n n
λ λλ

 
− ≤ ≤ + =  

 
. 

 
Hence, inserting the observed value x  and, further, using ˆ

ML xλ =  as an 
estimate for the underlying variance, an approximate 95% confidence interval 
for λ is 

 1.96 , 1.96x xx x
n n

− +  . 

 
 
(iii) 400, 2500; 6.25in x x= Σ = =  . 
 

So the approximate 95% confidence interval is 
 

  6.25 6.256.25 1.96 , 6.25 1.96
400 400

− +  

 
i.e. 6.005 ,  6.495 . 

 
 

Now using Σxi
2 = 25600, we have that the sample variance s2 is 

 

 ( )2
2 25001 997525600 25.00

399 400 399
s

 
= − = = 

 
 

 . 

 
Using s2 in the confidence interval gives the interval as 

 

  25.00 25.006.25 1.96 , 6.25 1.96
400 400

− +  

 
i.e. 5.76 ,  6.74 . 

 
This interval is twice as wide – because s2 is four times the size of x  – which 
suggests that a Poisson assumption is not valid. 

 
 
 
 



 

 

Higher Certificate, Paper I, 2003.  Question 6 
 
 
E(Y) = np Var(Y) = np(1 – p) 
 
 
(i) Binomial with n = 48, p = ¼. 
 
 
(ii) Score is distributed  36 + B(12, ¼). 
 

(a) Hence mean correct is 36 + (12/4) = 39 and variance is 12 × ¼ × ¾ = 9/4. 
 

(b) Number wrong is distributed B(12, ¾). 
 

(c) The required probability is  1 – P(0) – P(1) – P(2)  based on the B(12, ¼) 
distribution.  This is 

 

   
12 11 2 103 1 3 12 11 1 31 12

4 4 4 2 4 4
×        − − −        

        
 

        1 0.031676 0.126705 0.232293 0.6093= − − − =  . 

 
 
(iii) Number of correct answers for A is distributed as  27 + B(21, ¼). 

Number of correct answers for B is distributed as  28 + B(20, ¼). 
Number of correct answers for C is distributed as  30 + B(18, ¼). 

 
Means are  27 + (21/4) = 32¼,  28 + (20/4) = 33,  30 + (18/4) = 34½ 
respectively. 

 
Variances are  (21)(¼)(¾) = 63/16,  (20)(¼)(¾) = 60/16 = 15/4,  (18)(¼)(¾) = 
54/16 = 27/8 respectively. 

 

So overall mean is 1 (32.25 33 34.5)
3

+ +  = 33.25, 

 

and variance of overall mean is 1 63 15 27
9 16 4 8
 + + 
 

 = 1.2292. 
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( ) ( ) ( )
( ) ( ) ( )

, ,

29 129 ; for , ,
329

i A B C

P A P A
P A P i i A B C

P i P i
=

= = =
∑

 . 

 

( ) ( )
19 2

1
4

21 20 3 129 B 21, 2
2 4 4

P A P ×     = = =         
 

 

( ) ( )
19

1
4

3 129 B 20, 1 20
4 4

P B P     = = =         
 

 
( ) ( )1

429 B 18, 1 0P C P  = = − =   
 

[Note.  C must get at least the 30 he knows, so it must follow that 
( )29 0P C = , which is true if ( )29 0P C = .] 

 

So ( )

19 2

19 2 19

1 3 1.21.20
2 4 429

1 3 1 3 1.21.20 20
2 4 4 4 4

P A

   
   
   =

       +       
       

 

   

21
2132 0.724121 1 29

32 4

= = =
+

 

 
and similarly 

( )
1

8429 0.275921 1 29
32 4

P B = = =
+

 

 
(and ( )29 0P C = , see above). 

 



 

 

Higher Certificate, Paper I, 2003.  Question 7 
 
 
(i) P(X = x) = (1 – p)(1 – p)…(1 – p)p ,   for x = 0, 1, 2, … . 
 

                                  F        F            F    S 
 

                                  ----- x times ----- 
 
 

When p = 0.4,   P(0) = 0.4,  P(1) = 0.24,  P(2) = 0.144,  P(3) = 0.0864, 
P(4) = 0.0518,  P(5) = 0.0311,  P(6) = 0.0187, … . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(ii) The probability generating function of X is 

( ) ( ) ( )
1 1 1

1 ii i i
xx x xX

i
i i i

G s E s s p s p p p t
∞ ∞ ∞

= = =
= = = − =∑ ∑ ∑    where t = (1 – p)s 

         ( ) ( ) 12 31 ... 1p t t t p t −= + + + + = −  

         ( )1 1
p

p s
=

− −
 . 

 
The mean is given by G'(1) and the variance by G''(1) + G'(1) – [G'(1)]2, where 
the differentiation is with respect to s. 

 

( ) ( )
( ){ }2

1
'

1 1

p p
G s

p s

−
=

− −
 ,     so     mean ( ) ( )

2

1 1' 1
p p pG

p p
− −= = =  . 

 

( ) ( )
( ){ }

2

3

2 1
''

1 1

p p
G s

p s

−
=

− −
 ,     so  ( ) ( ) ( )2 2

3 2

2 1 2 1
'' 1

p p p
G

p p
− −

= =  . 

 

Hence the variance is ( ) ( ) ( )2 2 2

2 2 2 2

2 1 1 11 1 1p p pp p p
p p p p p p
− − −− − −+ − = − =  . 

 
Continued on next page 

0.4 

0 1 2 3 4 5 6 

P(x) 

… 
x 



 

 

(iii) We have Y = X + 1. 
 

So ( ) ( ) 11 , for 1,2,3,...yP Y y p p y−= = − =  . 
 

The probability generating function of Y can be obtained by a similar method 
to that used for X above, or it can be written down using the "linear 
transformation" result for probability generating functions: 

 

( )Pgf of is with 1 and 1bY s G as a b= = ,  i.e.  ( )1 1
ps

p s− −
 . 

 

Mean of Y  =  (mean of X)  +  1  =  1 11 p
p p
−+ =  . 

 
Variance of Y  =  variance of X. 
 



 

 

Higher Certificate, Paper I, 2003.  Question 8 
 

(i) 
( )( )

( ) ( )
1

2 2

1 1

n

i i
i

n n

i i
i i

x x y y
r

x x y y

=

= =

− −
=

− −

∑

∑ ∑
. 

 
This explains the strength of linear relationship between the xi and yi, with 
r = ±1 showing linearity and r = 0 showing no linear relationship.  The 
underlying X and Y are both random variables. 

 
 

(a) r near to +1, small amount of scatter about an (increasing) linear 
relationship 

 

 
 
 

(b) r near to –1, y decreases as x increases, otherwise as in (a) 
 

 
Continued on next page 



 

 

(c) Independent data (r ≈ 0) 
 

 
 
(d) Non-linear relationship, e.g. y = x2 
 

 
 
 
(ii) (a) Simple linear regression of y = cholesterol on x = age.  y is the 

dependent variable, x the independent.  Assume a linear relationship 
underlying the data, Yi = a + bxi + εi, where the {εi} are independent 
identically distributed N(0, σ 2) random variables with σ 2 constant for 
all i. 

 
 (b) r = √(0.323) = 0.568 for 'chol' and 'age'. 

r = √(0.940) = 0.970 for 'newchol' and 'newage'. 
 

The latter consists of the 8 data points omitting the observation at 
x = 27 which seems very far from the roughly linear pattern of the rest.  
Omitting it has made a linear relationship seem much more plausible.  
Subject number 2 has very high cholesterol for his age. 

 

Continued on next page 



 

 

 (c) Using the "constant" row in either set of output, the constant term is 
not significantly different from 0.  A model omitting a could perhaps 
be used. 

 
This would imply cholesterol 0 at age 0, which might not be very 
sensible  –  but we do not actually have data in that region, so we 
cannot claim that a linear relationship still holds. 

 
 (d) There is a tendency towards a curved relationship even when the very 

"unusual" observation at age 27 is omitted.  The fit of a line without 
that observation is however much better than with it, and the 
diagnostic plots, of residuals and Normal probability, seem acceptable. 
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