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Abstract

The prior distribution is the usual starting point for Bayesian uncertainty. In this paper, we
present a different perspective which focuses on missing observations as the source of statistical
uncertainty, with the parameter of interest being known precisely given the entire population. We
argue that the foundation of Bayesian inference is to assign a distribution on missing observations
conditional on what has been observed. In the i.i.d. setting with an observed sample of size n, the
Bayesian would thus assign a predictive distribution on the missing Yn+1:∞ conditional on Y1:n,
which then induces a distribution on the parameter. We utilize Doob’s theorem, which relies on
martingales, to show that choosing the Bayesian predictive distribution returns the conventional pos-
terior as the distribution of the parameter. Taking this as our cue, we relax the predictive machine,
avoiding the need for the predictive to be derived solely from the usual prior to posterior to predictive
density formula. We introduce the martingale posterior distribution, which returns Bayesian uncer-
tainty on any statistic via the direct specification of the joint predictive. To that end, we introduce
new predictive methodologies for multivariate density estimation, regression and classification that
build upon recent work on bivariate copulas.
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1 Introduction

Statistical uncertainty in a parameter of interest arises due to missing observations. If a complete pop-
ulation is observed, then the parameter of interest can be assumed to be known precisely. In this paper,
we argue that the Bayesian accounts for this uncertainty by constructing a distribution on the missing
observations conditional on what has been observed. This in turn induces a distribution on the parameter
given the observed data, which we will see is the posterior distribution. In this work, we will describe and
generalize this framework in detail for the case where the observations are independent and identically
distributed (i.i.d.), and we will also briefly consider other data structures.

In the i.i.d. case, given Y1:n
iid∼ F0 where F0 is the unknown true sampling distribution, the missing

observations are the remaining Yn+1:∞, and as such we focus our modelling efforts directly on the
predictive density

p(yn+1:∞ | y1:n). (1.1)

Here, the construction of the predictive density is for parameter inference, and not for forecasting future
observations as is more usual. For inference, we assume that the object of interest is fully defined
once all the observations have been viewed, which we write as θ∞ = θ(Y1:∞). It is clear then that
(1.1) induces a distribution on θ∞, and we call this scheme of imputing Yn+1:∞ and computing θ∞ as
predictive resampling. A key observation is that Y1:∞ will always contain the observed Y1:n = y1:n as the
predictive Bayesian considers the observed sample to be fixed, in contrast to the frequentist consideration
of other possible values of Y1:n.
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For i.i.d. observations, the traditional Bayesian approach is to elicit a prior density π(θ) and sam-
pling density fθ(y), derive the posterior π(θ | y1:n), then compute the predictive density through

p(y | y1:n) =
∫
fθ(y)π(θ | y1:n) dθ. (1.2)

A concise summary of our approach is the following: while de Finetti (1937) provided a representation
of Bayesian inference which relies on exchangeability and the prior distribution, we will introduce a
framework based on the results of Doob (1949) which relies solely, in the i.i.d. case, on the predictive
distribution. We will see that this framework based on Doob’s results is more flexible and the mathe-
matical requirement amounts to the construction of a martingale - it is this flexibility which we exploit
in this paper. In fact, through Doob’s theorem, we will see that predictive resampling as described above
is identical to posterior sampling when using (1.2) as the predictive and θ indexes the sampling density,
in which case θ∞ ∼ π(θ | y1:n). Denoting by p(y) the prior predictive, this connection is illustrated
below for the traditional Bayesian case:

fθ(y), π(θ) −−−−−−→
Bayes′ rule

π(θ | y1:n)
posterior predictive−−−−−−−−−−−−−→∫
fθ(y)π(θ|y1:n) dθ

p(y | y1:n)

π(θ | y1:n)
Doob′s theorem←−−−−−−−−−−−

Yn+1:∞ ∼ p(·|y1:n)
p(y | y1:n) ←−−−−−−−−−−

predictive update
p(y)

However, the traditional Bayesian focus on the prior on θ makes no appeal to the underlying cause of
the uncertainty, that is the unobserved part of the study population Yn+1:∞. Furthermore, the traditional
prior to posterior computation is becoming increasingly strained as model complexity and data sizes
grow. In our work, we advocate the predictive resampling strategy - given y1:n, our starting point is
directly the predictive model (1.1) and the target statistic of interest θ∞, noting now that θ∞ is no longer
restricted to indexing the sampling density. We relax de Finetti’s assumption of exchangeability, but we
must now take care to construct (1.1) so that θN is indeed convergent to some θ∞, where θN = θ(Y1:N )
can be viewed as an estimator. We highlight here that we use n and N for the size of the observed
dataset and the imputed population respectively. In the spirit of Doob, we rely heavily on martingales,
which also aid in ensuring that expectations of limits coincide with fixed quantities seen at the sample
of size n. This can be regarded as a predictive coherency condition, and we designate the distribution of
θ∞ as the martingale posterior. Our choice of (1.1) will be density estimators based on recent ideas in
the literature, specifically the conditionally identically distributed (c.i.d.) sequence of Berti et al. (2004)
and bivariate copula update of Hahn et al. (2018).

We now discuss why one would want to go through the route of obtaining the martingale posterior
via the induced distribution of θ∞ from (1.1) rather than the traditional likelihood–prior construction.
Firstly, predictive models are probabilistic statements on observables, which removes the need to elicit
subjective probability distributions on parameters which may have no real-world interpretations and only
index the sampling density. Secondly, the martingale posterior establishes a direct connection between
prediction and statistical inference, opening up the possibility of using modern probabilistic predictive
methods for inference (Breiman, 2001), and transparently acknowledges the source of statistical uncer-
tainty as the missing Yn+1:∞. Thirdly, working directly with predictive distributions is highly practical.
For an elicited 1-step ahead predictive, we can predictively resample by carrying out the recursive update

{p(y | y1:N−1), yN} 7→ p(y | y1:N )

to sample Yn+1:N for a large enough N such that θN has effectively converged to a sample from the
martingale posterior, or N matches a known finite study population size. In complex scenarios such as
multivariate density estimation and regression, we introduce new copula-based methodologies where our
computations remain exact, GPU-friendly and parallelizable, returning us Bayesian uncertainty without
any reliance on Markov chain Monte Carlo (MCMC). Finally, a predictive approach more clearly delin-
eates the core similarities and differences between Bayesian and frequentist uncertainty.
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We will focus on the i.i.d. data setting in this work, which corresponds to exchangeable traditional
Bayesian models. In this setting, the martingale posterior can indeed be regarded as a generalization of
the traditional Bayesian model, as the class of c.i.d. models is more general and contains the class of
exchangeable models which we will see in Section 3.2. In more complex data structures beyond i.i.d.
data, such as those encountered in hierarchical modelling or time series, our framework would still apply.
In this case, the missing observations we require may no longer be Yn+1:∞, and model elicitation would
no longer only involve a sequence of predictive distributions. For example, a simple hierarchical setting
is the observation process Yi ∼ p(yi|θi), where θi is itself drawn from an unknown G0 and we may be
interested in some functional γ(G0). Here, we only observe Y1:n = y1:n, so the missing observations of
interest are now the unobserved random effects θ1:∞. We can thus seek to impute θ1:n ∼ p(θ1:n | y1:n)
from the data, followed by the missing remainder θn+1:∞ ∼ p(θn+1:∞ | θ1:n). Computing γ(θ1:∞)
would then return us a posterior sample. For the remainder of the paper, we will focus only on the i.i.d.
case and leave the details of non-i.i.d. settings for future work.

In Section 2, we formally investigate the connection between predictive and posterior inference, and
introduce a predictive framework for inference and the resulting martingale posterior. We then utilize
the bootstrap as a canonical example to distinctly compare Bayesian and frequentist uncertainty. We
postpone discussion of related work until Section 2.5 in order to provide context beforehand. In Section
3, we discuss predictive coherence conditions for martingale posteriors, utilizing c.i.d. sequences. In
Section 4, we revisit the bivariate copula methodology of Hahn et al. (2018) for univariate density esti-
mation, and extend it to obtain the martingale posterior. We then generalize this copula-based method
to multivariate density estimation, regression and classification. Section 5 then provides a thorough
demonstration of the above methods through examples. In Section 6, we discuss some theoretical prop-
erties of the martingale posterior with the copula-based methodology. Finally, we discuss our results in
Section 7.

2 A predictive framework for inference

2.1 Doob’s theorem and Bayesian uncertainty

Uncertainty quantification lies at the core of statistical inference, and Bayesian inference is one frame-
work for handling uncertainty in a formal manner. The Bayesian begins with the random variables
(Θ, Y1, Y2, . . .), where (Y1, Y2, . . .) are the observables of interest, and Θ is the parameter which in-
dexes the sampling density fθ(y). We assume throughout that the appropriate densities exist. For i.i.d.
data, the Bayesian elicits a joint probability model for the observables and parameter with joint density

p(θ, y1:N ) = π(θ)

N∏
i=1

fθ(yi) (2.1)

for each N . Here, the density π(θ) represents prior knowledge about the parameter which generates
the observations, and under a Subjectivist point of view, Π(A) =

∫
A π(θ) dθ represents the subjective

probability that the generating parameter value Θ lies in the set A. Marginalizing out Θ gives the joint
density of the observables,

p(y1:N ) =

∫ N∏
i=1

fθ(yi) dΠ(θ). (2.2)

De Finetti however argued that the direct likelihood–prior interpretation of the Bayesian model was
insufficient, as Θ is of a “metaphysical” nature and probability statements should only be on observables
(Bernardo and Smith, 2009). This then motivated the notion of exchangeability of the infinite sequence
(Y1, Y2, . . .), where the joint probability P of the finite sequence of observables Y1:N = (Y1, . . . , YN ) is
invariant to the ordering of Yi for all N . Through de Finetti’s representation theorem (de Finetti, 1937)
and extensions thereof (e.g. Hewitt and Savage (1955)), the assumption of exchangeability induces the
likelihood–prior form of the joint density in (2.2) (where Π may not have a density), which motivates
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such a specification of the Bayesian model. The representation theorem however is only part of the
story. As alluded to in the Section 1, the source of statistical uncertainty is the lack of the infinite dataset
Yn+1:∞ with which we could pin down any quantity of interest precisely. Bayesian uncertainty through
the lens of the prior is still opaque in this regard, even with the aforementioned representation theorem.

The key to understanding the source of uncertainty lies in the predictive imputation of observables,
for which we require a result from Doob. Doob (1949) established consistency of the Bayesian method
when the observations are distributed according to (2.2). For this result, we require that the model is
identifiable, that is Fθ ̸= Fθ′ whenever θ ̸= θ′, where Fθ is the cumulative distribution function of fθ.
Let us assume that data has yet to be observed, so the missing observations are Y1:∞. Following the
discussion in Section 1, one can regard (2.2) as the joint predictive density on the missing population,
and can estimate the parameter indexing the sampling density as a function of the imputed Y1:N . An
appropriate and intuitive point estimate for the Bayesian is the posterior mean, which we write as

θ̄N = E [Θ | Y1:N ] .

We now use a secondary result of Doob (1949) to confirm that the prior uncertainty in Θ arises from
the predictive uncertainty in Y1:∞.

Theorem 1 (Doob (1949)). Assume Θ is in a linear space with E [|Θ|] < ∞, and (Θ, Y1, Y2, . . .) is
distributed according to (2.1), so Θ ∼ Π. Under identifiability and measurability conditions on Fθ, we
have

θ̄N → Θ a.s.

For the above result, the key is to rely on θ̄N being a martingale, that is

E
[
θ̄N | Y1:N−1

]
= θ̄N−1

almost surely. Doob’s martingale convergence theorem then ensures that θ̄N converges to a limit almost
surely. The identifiability condition ensures that the parameter is recoverable from the infinite sample
so that the limit of θ̄N is indeed Θ. For Θ in more general metric spaces, consistency results with
general notions of posterior expectations are provided in Ghosal and van der Vaart (2017, Theorem
6.8). As an aside, we highlight that Doob (1949) provided a more general result: the Bayesian posterior
distribution converges weakly to the Dirac measure δΘ almost surely for Π-almost every Θ as N →∞.
The technical details of a more general version of this result can be found in Ghosal and van der Vaart
(2017, Theorem 6.9). In the Bayesian nonparametric case where Θ is a probability density function, we
have a nonparametric extension of the above results (Lijoi et al., 2004).

Returning to the task at hand, we can summarize the above by considering two distinct methods of
sampling Θ from the prior Π before seeing any data. The first is to draw Θ ∼ Π directly, which is
the opaque view of the inherently random parameter that we are trying to shed light on. The second,
which inspires the remainder of our paper, begins with sequentially imputing the unseen observables
Y1, Y2, Y3 . . . from the sequence of predictive densities

Y1 ∼ p(·), Y2 ∼ p(· | y1), Y3 ∼ p(· | y2, y1), . . .

until we have the complete information Y1:∞ in the limit. Given this random infinite dataset, the limiting
point estimate θ̄∞ = limN→∞ θ̄N , that is the posterior mean computed on the entire dataset, is in fact
distributed according to Π. This equivalence highlights the fact that a priori uncertainty in Θ is a
consequence of the uncertainty in Y1:∞, and the function θ̄ provides a means to precisely recover our
quantity of interest when all information is made available to us.

Of course, such an interpretation is equally valid a posteriori, that is after we have observed Y1:n =
y1:n. Here, sampling Θ ∼ Π(· | y1:n) is equivalent to sampling Yn+1:∞ conditional on y1:n and com-
puting θ̄∞ as if we have observed the infinite dataset, noting that Y1:n = y1:n is now fixed. This can be
seen by simply substituting the prior π in (2.1), (2.2) and Theorem 1 with the posterior π(· | y1:n). In
conclusion, Doob’s result highlights that the Bayesian seeks to simulate what is needed to pin down the
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parameter but is missing from reality, that is Yn+1:∞ in the i.i.d. case, and we find this to be a compelling
justification for the Bayesian approach.

We now conclude this section with a concrete demonstration of the equivalence between posterior
sampling and the forward sampling of Yn+1:∞ through a simple normal model with unknown mean
based on an example from Hahn (2015).

Example 1
Let fθ(y) = N (y | θ, 1), with π(θ) = N (θ | 0, 1). Given an observed dataset y1:n, the tractable
posterior density takes on the form π(θ | y1:n) = N (θ | θ̄n, σ̄2n) where

θ̄n =

∑n
i=1 yi
n+ 1

, σ̄2n =
1

n+ 1
·

The posterior predictive density then takes on the form p(y | y1:n) = N (y | θ̄n, 1 + σ̄2n). For observed

data, we generated y1:n
iid∼ fθ(y) for n = 10 with θ = 2, giving θ̄n = 1.84.

We can plot the independent sample paths for the posterior mean, θ̄n+1:N , as we recursively forward
sample Yn+1:N , where N = n+1000 in this example. In Figure 1, we see that the sample paths of θ̄n+i

each converge to a random Θ as i increases, with the density of θ̄N very close to the analytic posterior.
From Doob’s consistency theorem, we know this is exact for N →∞.
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Figure 1: (a) Sample paths of θ̄n+i through forward sampling; (b) Kernel density estimate of θ̄N samples
( ) and analytical posterior density π(θ | y1:n) ( )

2.2 The methodological approach

Through Doob’s result in Theorem 1, we have demonstrated the predictive view of Bayesian inference as
a means to understand how the posterior uncertainty in Θ arises from the missing information Yn+1:∞.
The predictive view of Bayesian inference partitions posterior sampling into two distinct tasks. The first
is the simulation of Yn+1:∞ through the sequence of 1-step ahead predictive distributions to assess the
uncertainty that arises from the missing observables. The second is the recovery of the parameter of
interest Θ from the simulated complete information, which is facilitated by the limiting posterior mean
point estimate θ̄∞. The uncertainty in Θ then flows from the uncertainty in Yn+1:∞. Inspired by this, we
will now demonstrate the practical importance of this interpretation by introducing a predictive frame-
work for inference built exactly on these two tasks. This framework eliminates the need for the usual
likelihood–prior construction of the Bayesian model, and as such generalizes the traditional Bayesian
posterior to the martingale posterior.

2.2.1 Sampling the missing data

For the predictive Bayesian, the role of the posterior π(θ | y1:n) is to aid in the updating of the predictive
density, p(· | y1:N−1) 7→ p(· | y1:N ) after observing YN , and the likelihood and prior can be viewed as
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merely intermediate tools to construct the sequence of predictives (Roberts, 1965). To obviate the need
of a likelihood–prior specification, our proposal is to specify the sequence of 1-step ahead predictive
densities {p(· | y1:N )}N≥n directly, which implies a joint density through the factorization

p(yn+1:N | y1:n) =
N∏

i=n+1

p(yi | y1:i−1). (2.3)

However, we must take care in our elicitation of {p(· | y1:N )}N≥n to ensure the existence of the limit
θ∞. As this is technical, we defer a formal discussion of this choice and the conditions required to
Section 3. For now, we point out that a sufficient condition is for the 1-step ahead predictive densities to
satisfy a martingale condition similar to that of Doob, with details given in Section 3.2. It may seem that
constructing this sequence will incur too much complexity, but we will show this is in fact feasible and
desirable. One key idea is to utilize a general sequential updating procedure whereby given an observed
YN = yN , we have a direct and tractable iterative update {p(· | y1:N−1), yN} 7→ p(· | y1:N ).

2.2.2 Recovering the quantity of interest

We now discuss the second task: given a sample Yn+1:∞, we require a procedure to recover the quantity
of interest. In a traditional parametric Bayesian model, the quantity of interest is usually the unknown
parameter θ that indexes the sampling density, and as shown by Doob, the limiting posterior mean θ̄∞
serves this purpose. A more general framework is the decision task discussed in Bissiri et al. (2016),
where the aim is to minimize a functional of an unknown distribution function F0 from which samples
Y1:n are i.i.d.. For some loss function ℓ(θ, y), the quantity of interest θ is now defined as

θ0 = argmin
θ

∫
ℓ(θ, y) dF0(y). (2.4)

More details can be found for example in Huber (2004) and Bissiri et al. (2016). Typical examples
are ℓ(θ, y) = |θ − y| for the median, ℓ(θ, y) = (θ − y)2 for the mean, and ℓ(θ, y) = − log fθ(y) for
the Kullback-Leibler minimizer between some parametric density fθ and the sampling density f0. The
choice of the negative log–likelihood is also interesting as it allows us to target the parameters of a
parametric model without the assumption that the model is well–specified (Walker, 2013; Bissiri et al.,
2016). While misspecification under our framework is still an open question, the Bayesian bootstrap has
particularly desirable theoretical and practical properties under misspecification (Lyddon et al., 2018,
2019; Fong et al., 2019). We will also consider more general forms of θ0, e.g. the density of F0.

Working now in the space of probability distributions, the traditional Bayesian approach would be
to elicit a prior on F , perhaps nonparametric, and derive the posterior Π(dF | y1:n). Here, F represents
the Bayesian’s subjective belief on the unknown true F0. A posterior sample of θ is then obtained as
follows: draw F ∼ Π(dF | y1:n) and compute the θ minimizing

∫
ℓ(θ, y) dF (y). For our generalization

beyond the likelihood–prior construction, we do not have a posterior mean nor a posterior F , and thus
require an alternative to recover the quantity of interest given a sample of Yn+1:∞ conditioned on y1:n.
Our proposal is to construct the random limiting empirical distribution function

F∞(y) = lim
N→∞

1

N

{
n∑

i=1

1(yi ≤ y) +
N∑

i=n+1

1(Yi ≤ y)

}

and take θ to minimize
∫
ℓ(θ, y) dF∞(y). Here, our F∞ takes the place of the posterior draw of F , and

its existence will rely on the martingale condition as mentioned above. We can write θ∞, θ(F∞) or
θ(Y1:∞) interchangeably for the parameter of interest computed from the completed information. If we
specify p(· | y1:n) through the usual likelihood–prior construction, then sampling F from the posterior
in fact yields the same random distribution function as F∞ almost surely; this theoretical justification
for the limiting empirical distribution function F∞ is in Appendix C.2.
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2.3 The martingale posterior

Our framework for predictive inference is summarized as follows. Suppose we observe Y1:n i.i.d. from
some unknown F0 and are interested in the θ0 defined by (2.4). We specify a sequence of predictive
densities {p(· | y1:n)}n≥0 which satisfies the martingale condition to be discussed in Section 3.2 and
implies a joint distribution through (2.3). We then impute an infinite future dataset through

Yn+1 ∼ p(· | y1:n), Yn+2 ∼ p(· | y1:n+1), . . . , YN ∼ p(· | y1:N−1)

for N → ∞. Given the infinite random dataset Yn+1:∞ and the corresponding empirical distribution
functionF∞, we compute θ∞ = θ (F∞). We designate the distribution of θ∞ as the martingale posterior,
where we use the notation Π∞ for comparability to traditional Bayes.

Definition 1 (Martingale posterior). The martingale posterior distribution is defined as

Π∞(θ∞ ∈ A | y1:n) =
∫
1{θ(F∞) ∈ A} dΠ(F∞ | y1:n) , (2.5)

for measurable set A, which is a subset of the parameter space.

Drawing samples of θ∞ from the martingale posterior involves repeating the above simulation pro-
cedure given above. We refer to this Monte Carlo scheme as predictive resampling, which has strong
connections with the Bayesian bootstrap of Rubin (1981), as we will see in Section 2.4. In practice
however, we may be unable to simulateN →∞, or the study population may be of finite sizeN . In this
case, we can instead impute Yn+1:N for finite N , giving us the analogous empirical distribution function
FN and parameter θN = θ(FN ) or θ(Y1:N ).

Definition 2 (Finite martingale posterior). The finite martingale posterior is similarly defined as

ΠN (θN ∈ A | y1:n) =
∫
1{θ(y1:N ) ∈ A} p(yn+1:N | y1:n) dyn+1:N .

In the finite form, the role of the two constituent elements, p(yn+1:N | y1:n) and θ(y1:N ), is even
clearer. For infinite populations, we also highlight that the value of θN varies around θ∞, but this may
be negligible for sufficiently largeN . If the population is actually finite and of sizeN , then θN would be
the actual target and thus not an approximation. Finally, we reiterate that the martingale posterior (2.5)
is equivalent to the traditional Bayesian posterior when using (1.2) as the predictive. A summary of the
notation and an illustration of the imputation scheme is provided respectively in Appendices A, B.

2.4 The Bayesian bootstrap

The resemblance of the martingale posterior to a bootstrap estimator should not have gone unnoticed,
as both involve repeated sampling of observables followed by computing estimates from the sampled
dataset. The Bayesian bootstrap of Rubin (1981) is often described as the Bayesian version of the
frequentist bootstrap. After observing y1:n, one draws a random distribution function from the posterior
through

w1:n ∼ Dirichlet(1, . . . , 1), F (y) =

n∑
i=1

wi 1(yi ≤ y).

A posterior sample of the statistic of interest can then be computed as θ(F ). One interpretation of
the Dirichlet weights is to generate uncertainty through the randomization of the objective function
(Newton and Raftery, 1994; Jin et al., 2001; Newton et al., 2020; Ng and Newton, 2020). Closer to
our perspective are the connections to Bayesian nonparametric inference, which have been explored
in much detail within the literature as it is the non-informative limit of a posterior Dirichlet process
(Lo, 1987; Muliere and Secchi, 1996; Ghosal and van der Vaart, 2017). Recent work has exploited the
computational advantages of the Bayesian bootstrap for scalable nonparametric inference; see Saarela
et al. (2015); Lyddon et al. (2018); Fong et al. (2019); Newton et al. (2020); Knoblauch and Vomfell
(2020); Nie and Ročková (2020).
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2.4.1 The empirical predictive

Within the framework of martingale posteriors, the Bayesian bootstrap has a particularly elegant inter-
pretation that follows from the equivalence to the Pólya urn scheme (Blackwell and MacQueen, 1973;
Lo, 1988). The Bayesian bootstrap is equivalent to the martingale posterior if we define our sequence of
predictive probability distribution functions to be the sequence of empirical distribution functions, that
is

P (Yn+1 ≤ y | y1:n) = Fn(y) =
1

n

n∑
i=1

1(yi ≤ y). (2.6)

This is easy to see as sampling Yn+1 ∼ Fn(y) amounts to drawing with replacement 1 of n colours with
probability 1/n from the urn, and updating to Fn+1(y) is equivalent to reinforcing the urn, that is

Fn+1(y) =
n

n+ 1
Fn(y) +

1

n+ 1
1(yn+1 ≤ y).

Continuing on to ∞, the proportions of colours converge in distribution to the Dirichlet distribution.
Interestingly, this choice of predictive implies an exchangeable future sequence from the connection
to the Dirichlet process. The atomic support of the predictive is however slightly problematic if F0 is
continuous, as any new observations from F0 will be assigned a predictive probability of zero; we will
introduce methodology that remedies this in Section 4. Generalizations to other atomic predictives can
for example be found in Zabell et al. (1982); Muliere et al. (2000).

One can consider the empirical distribution function as the simplest nonparametric predictive for
i.i.d. data, and can thus regard the Bayesian bootstrap as the simplest Bayesian nonparametric model.
The uncertainty from the Bayesian bootstrap arises not from the random weights, but from the sequence
of empirical predictive distributions. We resample with replacement, treating each resampled point as a
new observed datum; this fundamental observation is our motivation for the term predictive resampling.

2.4.2 Comparison to the frequentist bootstrap

Throughout this section, we have assumed the existence of an underlying F0 from which Y1:n are i.i.d.,
which in turn implies the existence of an unknown true θ0 much like the frequentist. This has some
connections to frequentist consistency under our framework, which we discuss in Section 6.3. The pos-
terior random variable θ∞ then represents our subjective uncertainty in θ0 after observing Y1:n = y1:n.
The Bayesian bootstrap and Efron’s bootstrap (Efron, 1979) are then ideal vessels for the contrasting
of Bayesian and frequentist uncertainty. Both methods are nonparametric and begin by constructing
the empirical predictive Fn as in (2.6) from the atoms of y1:n as an estimate of F0, and both involve
resampling. The key difference lies in how the resampling is carried out.

The frequentist draws a dataset of size n i.i.d. from Fn, which we write as Y ∗
1:n with corresponding

empirical distribution function F ∗
n , and computes θ(F ∗

n) as a random sample of the estimator. The
Bayesian on the other hand draws an infinite future dataset Yn+1:∞ through predictive resampling, and
computes θ(F∞) as a random sample of the estimand, where F∞ is the limiting empirical distribution
function of {y1:n, Yn+1:∞}, noting again that the Bayesian holds y1:n fixed. This is summarized in
Algorithms 1 and 2. Notably, the specification in both bootstraps are equivalent: it is merely the
elicitation of Fn(y), which entirely characterizes both types of uncertainty.

2.5 Related work

There have been many others that shared de Finetti’s view on the emphasis on observables for inference.
The work of Dawid (1984, 1992a,b) on prequential statistics, a portmanteau of probability/predictive
and sequential, is one such example. In his work, Dawid focuses on the importance of forecasting, and
introduces statistical methodology that assign predictive probabilities and assesses these methods on
their agreement with the observed data. In particular, Dawid (1984) recommends eliciting a sequence of
1-step ahead predictive distributions as we do, but motivates this by arguing that forecasting is the main
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Algorithm 1: Bayesian bootstrap
Set Fn from the observed data y1:n
for j ← 1 to B do

for i← n+ 1 to∞ do
Sample Yi ∼ Fi−1

Update Fi ← [ {Fi−1, Yi}
end
Compute F∞ from {y1:n, Yn+1:∞}
Evaluate θ(j)∞ = θ(F∞)

end
Return {θ(1)∞ , . . . , θ

(B)
∞ }

Algorithm 2: Efron’s bootstrap
Set Fn from the observed data y1:n
for j ← 1 to B do

for i← 1 to n do
Sample Y ∗

i ∼ Fn

No update to Fn

end
Compute F ∗

n from {Y ∗
1:n}

Evaluate θ(j)n = θ(F ∗
n)

end
Return {θ(1)n , . . . , θ

(B)
n }

statistical task. As pointed out in Section 1, this is in contrast to our case where parameter inference is
the main task of interest and the sequence of predictives is mainly a convenient tool to construct the
joint predictive on future observations. We will see in Section 3.2 that stricter conditions are required
on this sequence of predictives for inference. Another strong proponent of the predictive approach is the
work of Geisser: he believed that the prediction of observables was of much greater importance than the
estimation of parameters, which he described as “artificial constructs” (Geisser, 1975). His emphasis
on the predictive motivated cross-validation (Stone, 1974; Geisser, 1974), which is now popular for
Bayesian model evaluation (Vehtari and Lampinen, 2002; Gelman et al., 2014). Works such as Dawid
(1985); Lauritzen (1988) also consider parameters as functions of the infinite sequence of observations
using the notion of repetitive structures. Finally, the work of Rubin on both the potential outcomes model
(Rubin, 1974) and multiple imputation (Rubin, 2004) highlights the idea of inference via imputation.

An early application of what is essentially finite predictive resampling and martingale posteriors is
Bayesian inference for finite populations, first discussed in Roberts (1965); Ericson (1969) and later by
Geisser (1982, 1983). A finite population Bayesian bootstrap is described in Lo (1988), in which a finite
Pólya urn is used to simulate from the posterior. The ‘Pólya posterior’ of Ghosh and Meeden (1997)
uses the same approach following an admissibility argument. These methods have applications in survey
sampling or the interim monitoring of clinical trials (Saville et al., 2014).

There have been recent exciting directions of work that investigate the predictive view of Bayesian
nonparametrics (BNP). Fortini et al. (2000) investigate under what conditions parametric models arise
from the sequence of predictives using the concept of predictive sufficiency, and derive conditions such
that the joint distribution is exchangeable. Fortini and Petrone (2012, 2014) discuss the construction of
a range of popular exchangeable BNP priors through a sequence of predictive distributions, motivated
through a predictive de Finetti’s representation theorem (Fortini and Petrone, 2012, Theorem 2). Berti
et al. (2020) then generalize the nonparametric approach to c.i.d. sequences; we will later see that c.i.d.
sequences, as introduced in Berti et al. (2004), play a crucial role in our work. However, the previously
described methods are mostly constrained to the discrete case. Hahn (2015) and Hahn et al. (2018)
construct c.i.d. models through a predictive sequence for univariate density estimation, respectively uti-
lizing the kernel density estimator and the bivariate copula. Hahn (2015) also discusses the connection
of Bayesian uncertainty and prediction with a weaker argument, and gives a similar example to our Ex-
ample 1. Predictive resampling is then used to sample nonparametric densities from a finite martingale
posterior; however Hahn (2015) instead specifies the predictive distribution PN for large N and works
backwards to find the sequence of predictives. Fortini and Petrone (2020) analyze the predictive recur-
sion algorithm of Newton et al. (1998) and the implied underlying quasi-Bayesian model. In their work,
they carry out predictive resampling to simulate from the prior law of the mixing distribution in an exam-
ple, and obtain its asymptotic distribution under the c.i.d. model, that is an asymptotic approximation to
the martingale posterior. An interesting aside is the recent work of Waudby-Smith and Ramdas (2020)
which utilizes adaptive betting with martingale conditions for the purpose of constructing frequentist
confidence intervals. We aim to unify these related strands of research under a single framework.
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3 Predictive resampling for martingale posteriors

For the martingale posterior, we now embark on the task of eliciting the general 1-step ahead predictive
distributions, with the traditional Bayesian posterior predictive as a special case. For notational conve-
nience, we write the sequence of predictive probability distribution functions estimated after observing
Y1:i = y1:i as

Pi(y) := P (Yi+1 ≤ y | y1:i), i ∈ {1, 2, . . .} (3.1)

which may have corresponding density functions pi(y). The subscript indicates the length of the con-
ditioning sequence, and there may be a P0(y) as some initial choice. For a general sequence of pre-
dictives, where exchangeability no longer necessarily holds, we instead define our joint distribution on
y1:N through this sequence of 1-step ahead predictives and the chain rule as in (2.3). The Ionescu-Tulcea
theorem (Kallenberg, 1997, Theorem 5.17) guarantees the existence of such a joint distribution as we
take N →∞, which has been pointed out by works such as Dawid (1984); Fortini and Petrone (2012);
Berti et al. (2020).

Beyond the traditional Bayesian posterior predictive, there is good justification for specifying the
model with 1-step ahead predictives, instead of say m-step ahead. It is simple to interpret and estimate
a 1-step ahead predictive as the decision maker’s best estimate of the unknown sampling distribution
function F0, and methods such as maximum likelihood estimation already do this. Finally, we will
see that a 1-step update of the predictive allows for the enforcing of the c.i.d. condition for predictive
coherence.

While the prescription of (3.1) remains a subjective task, we find it to be no more subjective than the
selection of a sampling density. There is no longer a need to elicit subjective distributions on parameters
which merely index the sampling distribution with no physical meaning, which has been described as
‘intrinsic’ (Dawid, 1985). In nonparametric inference, we also do not need to elicit priors directly on
the space of probability distributions, which can be cumbersome. The uncertainty arises simply from
the elicitation of (3.1). It is clear that we can still use external information and subjective judgement not
provided by the data y1:n in this construction.

3.1 A practical algorithm for uncertainty

Given the model specification (3.1), suppose we wish to undertake inference on a statistic of interest
θ(F0), defined through a loss function ℓ(θ, y) as in (2.4). We can obtain finite martingale posterior sam-
ples through predictive resampling given in Algorithm 3, noting the similarity to the Bayesian bootstrap
algorithm.

Algorithm 3: Predictive resampling
Compute Pn from the observed data y1:n
N > n is a large integer
for j ← 1 to B do

for i← n+ 1 to N do
Sample Yi ∼ Pi−1

Update Pi ←[ {Pi−1, Yi}
end
Compute FN from {y1:n, Yn+1:N}
Evaluate θ(j)N = θ(FN ) or θ(j)N = θ(PN )

end
Return {θ(1)N , . . . , θ

(B)
N } iid∼ ΠN (· | y1:n)

In summary, we run a forward simulation starting at Pn(y) by consecutively sampling from the 1-
step ahead predictives and updating as we go. For largeN , we now have a random dataset {y1:n, Yn+1:N}
from which we can compute the empirical distribution function FN (y) and statistic of interest θ(FN ). In
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particular, when the sequence of predictives takes on the form (1.2), combined with the self-information
loss, − log fθ(y), is this procedure equivalent to traditional Bayesian inference.

The empirical distribution is atomic, which may be problematic if the object of interest θ0 requires
the limiting F∞ to be continuous, for example if θ0 is the probability density of F0 or a tail probability.
In this case, we can instead compute θ(PN ), where PN is the random predictive distribution function
conditioned on {y1:n, Yn+1:N}, which would typically be continuous. We can regard PN as the finite
approximation to the limiting predictive distribution function P∞ := limN→∞ PN , which serves the
same purpose as the limiting empirical F∞ in Section 2.2.2. In fact, P∞ and F∞ coincide for traditional
Bayesian models, and even for the more general c.i.d. sequence of predictives that we will consider
shortly. We discuss this in Appendix C, borrowing results from Doob (1949), Berti et al. (2004) and
Lijoi et al. (2004).

Some experimental and theoretical guidance for selecting a sufficiently large N to estimate P∞ is
given in Sections 5 and 6. However, it is also interesting to consider a finite population, where the F0 of
interest is indeed the empirical distribution function of a population of size N , as discussed in Sections
2.3 and 2.5. In this case, truncating predictive resampling at N indeed returns the correct uncertainty in
any parameter of interest θ(Y1:N ) of the finite population.

3.2 Predictive coherence and conditionally identically distributed sequences

The notion of coherence on one’s belief on the parameter θ is key to the subjective Bayesian, where
coherence may be defined in a decision-theoretic sense (Bernardo and Smith, 2009, Chapter 2.3) or
through Dutch book arguments (e.g. Heath and Sudderth (1978)). Extensions of coherence to forecasting
are given in Lane and Sudderth (1984); Berti et al. (1998), and more examples of coherence in general
can be found in Robins and Wasserman (2000); Eaton and Freedman (2004). More recently, the notion
of coherence of belief updating was introduced in Bissiri et al. (2016), where a belief update on a statistic
of interest θ is coherent if the update is equivalent whether computed sequentially with y1 followed by y2
or with {y1, y2} in tandem through an additive loss condition. In bypassing the traditional likelihood–
prior construction, we must forsake the usual coherence of belief updating and exchangeability. Instead,
we specify conditions for a valid martingale posterior entirely in terms of the predictive distribution
function, which we term predictive coherence.

Suppose we observe Y1:n i.i.d. from some F0 and construct Pn(y) as in (3.1). We can then view the
predictive machine Pn(y) as the best estimate of the unknown distribution function F0 from which the
data arose, incorporating all observed data and any possible subjective knowledge. The first minimal
condition is that the sequence of predictive distribution functions Pn+1(y), Pn+2(y) . . . converges to a
random distribution function. Secondly, we would ensure that predictive resampling does not introduce
any new information or bias, as Pn is already our best summary of the observed y1:n, and the procedure
should merely return uncertainty. Formally, we write these conditions respectively as follows:

Condition 1 (Existence). The sequence Pn+1(y), Pn+2(y), . . . converges to a random P∞(y) almost
surely for each y ∈ R, where P∞ is a random probability distribution function.

Condition 2 (Unbiasedness). The posterior expectation of the random distribution function satisfies

E [P∞(y) | y1:n] = Pn(y)

almost surely for each y ∈ R.

Under Condition 1, P∞ is defined through the sequence of predictives, and we can thus treat P∞ di-
rectly as the random distribution function without the need for an underlying Bayes’ rule representation.
This in turn gives us the posterior uncertainty in any statistic θ(P∞). Condition 2 is stricter, and implies
that Pn is our best estimate of F0 and is equal to the posterior mean.

Fortunately, Conditions 1 and 2 are satisfied if the sequence Yn+1, Yn+2, . . . is conditionally identi-
cally distributed (c.i.d.), as introduced and studied in Berti et al. (2004). Many useful properties of c.i.d.
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sequences have been shown in their work, which we now summarize. The sequence Yn+1, Yn+2, . . . is
c.i.d if we have

P (Yi+k ≤ y | y1:i) = Pi(y), ∀k > 0

almost surely for each y ∈ R. This states that conditional on y1:i, any future data points will be iden-
tically distributed according to the predictive Pi. This predictive invariance is particularly natural as a
minimal predictive coherence condition, and serves as an analogue to de Finetti’s exchangeability as-
sumption in the predictive framework. In fact, as shown in Kallenberg (1988), the c.i.d. condition is a
weakening of exchangeability, and Berti et al. (2004) also show that c.i.d. sequences are asymptotically
exchangeable, which we state formally in Theorem 3 in Section 6.1.

An equivalent formulation of c.i.d. sequences which connects closely to the predictive coherency
conditions is that Pi(y) is a martingale for i ∈ {n+ 1, n+ 2, . . .}, that is

E [Pi(y) | y1:i−1] ≡
∫
Pi(y) dPi−1(yi) = Pi−1(y) (3.2)

almost surely for each y ∈ R, noting that Pi depends on yi as in (3.1). Relying again on Doob’s martin-
gale convergence theorem (Doob, 1953), the sequence Pn(y), Pn+1(y), . . . converges to P∞(y) almost
surely for each y ∈ R, and P∞ can be shown to be a random probability distribution function (Berti
et al., 2004); we state this formally in Theorem 4 in Section 6.1. In this case, we also designate the
distribution of P∞ as the martingale posterior when we do not specify θ∞. Condition 2 is then sat-
isfied as the sequence Pn+1(y), Pn+2(y), . . . is uniformly integrable. Furthermore, we are guaranteed
the existence of the limiting empirical distribution function F∞ as required in Section 2.2.2, and in fact
F∞(y) = P∞(y) almost surely so the interchangeability of θ(F∞) and θ(P∞) is justified. This equiv-
alence, as well as the convergence of θ(Y1:N ) with N for a certain class of parameters, is discussed in
Appendix C.1. Although not explored here, connections of the c.i.d. property to other notions of co-
herence, such as those given at the start of this subsection, would be interesting to investigate especially
given the absence of the prior distribution.

Although the above predictive coherence conditions are for a valid martingale posterior, we still need
to specify a sequence of predictive distributions. Clearly the traditional Bayesian posterior predictive
satisfies the above conditions, but in the interest of computational expediency or the desire to bypass
the likelihood–prior construction, we may wish to consider more general predictive machines. The
remainder of this paper will consider recursive predictive densities using bivariate copulas.

4 Recursive predictives with bivariate copulas

In this section, we focus primarily on the elicitation of the sequence of predictives (3.1) in the continuous
case, where pi(y) is the density of Pi(y) in (3.1). Analogous predictives are derivable for the discrete
case, and these are obtained in Berti et al. (2020). In particular, we investigate the prescription of this
sequence of predictives through a recursive manner, that is for i ∈ {0, 1, . . .}

pi+1(y) = ψρ
i+1 {pi(y), yi+1}

where ψρ
i is a sequence of update functions, possibly parameterized by a hyperparameter ρ. In this case,

we require an initial guess p0(y) for our recursion, which plays the role of a prior guess on f0. A recur-
sive update of this form is not necessary for a martingale posterior, but it allows for simple satisfaction
of conditions for predictive coherence as discussed in Section 3.2, and computations for predictive re-
sampling will also be significantly easier. Furthermore, when one is only interested in estimating pn(y),
recursive updates may have computational advantages as one does not need to explicitly estimate the
posterior.

Recursive updates have previously been motivated as a fast alternative to MCMC in Dirichlet process
mixture models (DPMM). The predictive recursion algorithm was first introduced by Newton et al.
(1998), which estimates the mixing distribution through a recursive update, and its properties have been
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studied in detail in the literature; see Martin (2018) for a thorough review. One interesting property
shown in Fortini and Petrone (2020) is that the sequence of observables in Newton’s algorithm is c.i.d.;
however, the computation of the predictive densities is intractable and requires numerical integration,
so we will not discuss this method further here. Direct recursive updates for the predictive density
were then introduced in Hahn (2015); Hahn et al. (2018); Berti et al. (2020), all of which satisfy the
c.i.d. condition. The bivariate copula method of Hahn et al. (2018) is particularly tractable and well
motivated, and we will now build on this method in this section.

4.1 Bivariate copula update

To satisfy the c.i.d. condition required for predictive coherence, we can extend the martingale condition
to hold for the sequence of densities pn, pn+1, . . . such that for i ∈ {n+ 1, n+ 2, . . .}

E [pi(y) | y1:i−1] ≡
∫
pi(y) pi−1(yi) dyi = pi−1(y) (4.1)

almost surely for each y ∈ R, assuming the expectations exist. We highlight again that pi depends on
yi as it is the density of (3.1). The above is a sufficient condition for (3.2) to hold, so our sequence is
c.i.d. and the existence and unbiasedness conditions are satisfied giving us a valid martingale posterior.
In fact, the martingale convergence theorem shows that pi(y) → p∞(y) almost surely for each y ∈ R,
but more assumptions are needed to show that p∞ is the density of P∞(y); we explore this in Theorem
5 in Section 6.1.

One particular tractable form of update rule ψρ
i that satisfies (3.2) is the bivariate copula (Nelsen,

2007) update interpretation of Bayesian inference first introduced in Hahn et al. (2018) for univariate
data. A bivariate copula is a bivariate cumulative distribution function C : [0, 1]2 → [0, 1] with uni-
form marginal distributions, and in the cases we consider it will have a probability density function
c : [0, 1]2 → R. The bivariate copula can be regarded as characterizing the dependence between two
random variables independent of their marginals, which can be seen through Sklar’s theorem in the
bivariate case.

Theorem 2 (Sklar (1959)). For a bivariate cumulative distribution function F (y1, y2) with continuous
marginals F1(y1), F2(y2), there exists a unique bivariate copula C such that

F (y1, y2) = C{F1(y1), F2(y2)}.

Furthermore, if F has a density f with marginal densities f1, f2, we can write

f(y1, y2) = c{F1(y1), F2(y2)} f1(y1) f2(y2)

where c is the density of C.

This holds for higher dimensions, but we state it for d = 2 as this is what we will be working with.
From this, we can see that the bivariate copula can model the dependence structure between consecutive
predictive densities, and thus we have the following corollary, with the proof given in Appendix D.1.

Corollary 1. The sequence of conditional densities p0, p1, . . . satisfies the martingale condition (4.1) if
and only if there exists a unique sequence of bivariate copula densities c1, c2, . . . such that

pi+1(y) = ci+1{Pi(y), Pi(yi+1)} pi(y) (4.2)

for i ∈ {0, 1, . . .} and Pi is the distribution function of pi.

In the univariate case, we can thus elicit a c.i.d. model through a sequence of copulas, that is we have
(4.2) as our update function ψρ

i+1. We highlight that ci+1 is the bivariate copula density that models
the dependence between {Yi+1, Yi+2} conditioned on Y1:i. Although the sequence ci+1 can technically
depend arbitrarily on y1:i (and the sample size i+1) without violating the martingale condition, we will
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later constrain this dependence. As all exchangeable Bayesian models are c.i.d., there exists a unique
sequence of copulas which may or may not be tractable that characterize the model (Hahn et al., 2018).
This sequence takes on exactly the form

pi+1(y) =

∫
fθ(y) fθ(yi+1)π(θ | y1:i) dθ

pi(y) pi(yi+1)︸ ︷︷ ︸
ci+1{Pi(y),Pi(yi+1)}

pi(y). (4.3)

The copula density arises following Theorem 2 as the numerator in (4.3) is the joint density pi(y, yi+1)
with marginal densities pi(y) and pi(yi+1). Instead of specifying the sampling distribution and prior, we
will now consider the specification of the sequence of copulas ci directly. The form for ci inspired by the
DPMM is particularly attractive, and serves well as the canonical extension of the Bayesian bootstrap
predictive to continuous random variables. In the remainder of this section, we will first review the
method of Hahn et al. (2018) for univariate density estimation, and extend the methodology to include
predictive resampling and hyperparameter selection. We then introduce analogous copula updates for
more advanced data settings, including multivariate density estimation, regression and classification.

4.2 Univariate case

Tractable forms of this sequence of copulas in Bayesian models are investigated in Hahn et al. (2018),
which correspond to conjugate priors. The update of particular interest is that of the DPMM (Escobar
and West, 1995) of the particular form

fG(y) =

∫
N (y | θ, 1) dG(θ), G ∼ DP (a,G0) , G0 = N (θ | 0, τ−1),

where a > 0 is the scalar precision parameter that we set to a = 1. The model is nonparametric, making
it a strong candidate for a predictive update, but only the copula update for i = 0 is tractable. Inspired
by this first update step, Hahn et al. (2018) suggest that the general update to compute the density pi(y)
after observing y1:i for i ∈ {0, . . . , n− 1} takes on the form

pi+1(y) = (1− αi+1) pi(y) + αi+1cρ {Pi(y), Pi(yi+1)} pi(y)
Pi+1(y) = (1− αi+1)Pi(y) + αi+1Hρ {Pi(y), Pi(yi+1)}

(4.4)

where Pi(y) is the distribution function of pi(y). Here cρ(u, v) is the bivariate Gaussian copula density
and Hρ(u, v) is the conditional Gaussian copula of the forms:

cρ(u, v) =
N2

{
Φ−1(u),Φ−1(v) | 0, 1, ρ

}
N{Φ−1(u) | 0, 1}N{Φ−1(v) | 0, 1}

, Hρ(u, v) = Φ

{
Φ−1(u)− ρΦ−1(v)√

1− ρ2

}
(4.5)

where Φ−1 is the standard inverse normal distribution function and N2 is the standard bivariate density
with correlation ρ ∈ (0, 1). The role of ρ as a bandwidth will be explored shortly. The update (4.4)
is then a mixture of the independent copula density and the Gaussian copula density, and the sequence
αi = O

(
i−1
)

ensures the update approaches the independent copula as i → ∞. Although asymptotic
independence is not necessary for the martingale condition, this property holds for Bayesian sequences
of copulas (Hahn et al., 2018), and is indeed important for frequentist consistency when estimating pn
as we will see in Section 6.3. We will see the specific suggested form of αi at the end of this subsection.

Note the similarity of the update in (4.4) to the generalized Pólya urn for the Dirichlet process,
which for c = 1 has the update Pi+1(y) = (1− αi+1)Pi(y) + αi+1 1(yi+1 ≤ y). We can thus interpret
(4.4) as a smooth generalization of the Bayesian bootstrap update for continuous distributions. One can
also interpret (4.4) as a Bayesian kernel density estimate (KDE) that satisfies the c.i.d. condition, as the
regular KDE cannot satisfy this condition (West, 1991). The update can be visualized in Figure 2, where
for convenience we write ui = Pi(y), vi = Pi(yi+1). The Gaussian copula kernel cρ (ui, vi) pi(y) is a
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Figure 2: Current predictive density pi(y) ( ) and new datum yi+1 ( ); (a) Copula kernel
cρ (ui, vi) pi(y) for correlation ρ = 0.7, 0.8, 0.9 ( , , ); (b) Corresponding updated predictive
density pi+1(y) ( , , ) for αi+1 = 0.5; note that we write ui = Pi(y), vi = Pi(yi+1)

data dependent kernel roughly centered at yi+1, as shown in the left. The kernel becomes sharper as ρ
increases, and we recover the Bayesian bootstrap in the limit of ρ → 1 (with αi = 1/i). The update is
then a mixture of pi(y) and the copula kernel, which gives us pi+1(y) in the right panel.

The recursive update was first introduced to compute pn(y), but properties of the update make it a
highly suitable candidate for predictive resampling. Firstly, by Corollary 1, this update is guaranteed to
provide a c.i.d. sequence and hence satisfy the existence and unbiasedness conditions. Secondly, the
update of the predictive distribution is online, and does not require an expensive recomputation of the
predictive distribution at each step. Finally, the predictive resampling update is particularly computa-
tionally elegant as yi+1 ∼ Pi(y) implies that Pi(yi+1) ∼ U [0, 1], so all that is required is the simulation
of uniform random variables. The forward sampling step then involves simulating Vi ∼ U [0, 1] and
computing

pi+1(y) = [1− αi+1 + αi+1cρ {Pi(y), Vi}] pi(y)
Pi+1(y) = (1− αi+1)Pi(y) + αi+1Hρ {Pi(y), Vi}

iterated over i ∈ {n, . . . , N}, which gives us a random pN (y) at the end. There is no need to actually
sample Yi+1 ∼ Pi(y), which is possible but is more computationally expensive. In Section 6, we will
see that this update form allows easy analysis of the theoretical properties of predictive resampling.

The bandwidth ρ controls the smoothness of the density estimate, which we can set in a data-
dependent manner as we show in Section 4.5.2. On the other hand, the sequence αi is responsible
for the uncertainty as we will see in Section 6, so extra care must be taken when eliciting this. Hahn
et al. (2018) suggest the form αi = (i + 1)−1 inspired from the stick-breaking process of the posterior
DP as in the Bayesian bootstrap, which works well for estimating pn(y) but we find this performs poorly
when predictive resampling, giving too little uncertainty. This was also observed in Fortini and Petrone
(2020) in the case of Newton’s recursive method. However, it should be observed that the posterior over
the mixing distribution G is actually a mixture of DPs, that is

[G | θ1:n, y1:n] ∼ DP
(
a+ n,

aG0 +
∑n

i=1 δθi
a+ n

)
, [θ1:n | y1:n] ∼ π(θ1:n | y1:n)

where π(θ1:n | y1:n) is intractable. As shown in Appendix E.1.1, we only require the simplifying
assumption of π(θ1:n | y1:n) =

∏n
i=1G0(θi), which corresponds to each datum belonging to its own

cluster in a similar spirit to the KDE. This then returns us the same copula update as (4.4) with

αi =

(
2− 1

i

)
1

i+ 1
· (4.6)

Intuitively, the additional mixing over θ1:n results in the inflated value compared to αi = (i + 1)−1.
Note this is still O(i−1), matches with initial update step for i = 1, and works much better in practice
as it approaches 0 more slowly. We use this sequence for the remainder of the copula methods.
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4.3 Multivariate case

In this section, we extend the univariate method to multivariate data y ∈ Rd, allowing us to both learn
pn(y) recursively, and retain the c.i.d. sequence so we can predictively resample to obtain uncertainty.
Even without predictive resampling, a general multivariate density estimator pn(y) is of interest, as
the KDE is known to perform poorly in high dimensions; see Wang and Scott (2019) for a review.
Computation for the multivariate DPMM (MacEachern, 1994; Escobar and West, 1995; Neal, 2000) may
scale poorly as the number of dimensions grows. Variational inference (VI) is a quicker approximation
as demonstrated in Blei and Jordan (2006), but there is strong dependence on the optimization procedure,
which may impair performance in high dimensions. A copula method for bivariate data is suggested in
the appendix of Hahn et al. (2018), but it does not scale well with dimensionality and is not c.i.d.. A
recursive method for multivariate density estimation is introduced in Cappello and Walker (2018), but
numerical integration on a grid is still required, which scales exponentially with d, or a Monte Carlo
scheme is required. Fortini and Petrone (2020) propose a multivariate extension of Newton’s recursive
method, but it also requires an approximate Monte Carlo scheme to evaluate the predictive density.

Extending the above argument in Corollary 1 to multivariate data is not as straightforward, as we
would like to factorize the joint density into pi(y,yi+1) = k(y,yi+1)pi(y)pi(yi+1), which does not
have the copula interpretation like in the 2-dimensional case. Furthermore, building high-dimensional
copulas is a difficult task, and bivariate copulas are good building blocks for higher dimensional depen-
dency (Joe and Xu, 1996; Bedford and Cooke, 2001; Aas et al., 2009).

4.3.1 Factorized kernel

With the above in mind, we now consider the first step update of a multivariate DPMM below

fG(y) =

∫ d∏
j=1

N (yj | θj , 1) dG(θ), G ∼ DP (a,G0) , G0(θ) =
d∏

j=1

N (θj | 0, τ−1)

where yj is the j-th dimension of y, and likewise for θj . Note the factorized normal kernel and inde-
pendent priors for each θj . From this, we see that we can factorize p0(y) =

∏d
j=1 p0(y

j). It is shown in
Appendix E.1.2 that the first update step takes on the form

p1(y) =

1− α1 + α1

d∏
j=1

cρ

{
P0(y

j), P0(y
j
1)
} p0(y)

where yji is the j-th dimension of the i-th data point. However, naively using this update for i > 1 will
result in the sequence pi(y) no longer satisfying the martingale condition in (4.1), and we also find that
it performs poorly empirically. A simple but key extension allows us to retain the c.i.d. sequence:

pi+1(y) =

1− αi+1 + αi+1

d∏
j=1

cρ

(
uji , v

j
i

) pi(y) (4.7)

where
uji = Pi

(
yj | y1:j−1

)
, vji = Pi

(
yji+1 | y

1:j−1
i+1

)
.

The input to the bivariate normal copula is now the conditional cumulative distribution function at y
and yi+1 for a particular dimension ordering, and this change ensures many desirable properties. First,
we can verify that the martingale condition (4.1) now holds through a multivariate change of variables
from yi+1 to v1:di , so the c.i.d. condition is satisfied. By marginalizing yd, yd−1, . . . , yk+1 in descending
order, we also have that the marginals for a single ordering of dimensions has the same update

pi+1

(
y1:k

)
=

1− αi+1 + αi+1

k∏
j=1

cρ

(
uji , v

j
i

) pi

(
y1:k

)
. (4.8)
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From this, we can update the conditional distribution functions via

uki+1 =

(1− αi+1)u
k
i + αi+1Hρ

(
uki , v

k
i

) k−1∏
j=1

cρ

(
uji , v

j
i

) pi
(
y1:k−1

)
pi+1 (y1:k−1)

(4.9)

and likewise for vki+1. As a result, all terms in the update (4.7) can be computed tractably, with no
need for numerical integration or approximations, allowing us to extend this method to any number
of dimensions as computation complexity is linear in d. Notably, we must specify an ordering of the
dimensions of y, which at first may seem undesirable. However, it is not an assumption on dependence,
and the only implication is that the subset of ordered marginal distributions continue to satisfy (4.8), that
is a sort of marginal coherence. Interestingly, the form of (4.8) suggests that pi

(
y1:k

)
depends only on

the first k dimensions of y1:i. Practically, we find the dimension ordering makes little difference, and we
recommend selecting the ordering such that any conditional or marginal distributions of interest remain
tractable. In Appendix E.1.3 we provide an extension to the above for mixed-type data.

Predictive resampling again takes on a simple form due to the nature of the update (4.7). We can
imagine drawing each dimension of Y ∼ Pi(·) in a sequential nature, that is

[Y 1] ∼ Pi

(
y1
)
, [Y 2 | y1] ∼ Pi

(
y2 | y1

)
, . . . , [Y d | y1:d−1] ∼ Pi

(
yd | y1:d−1

)
. (4.10)

Letting V j
i denote Pi

(
Y j | Y 1:j−1

)
, we then have that V j

i
iid∼ U [0, 1] for j = {1, . . . , d}, which we can

substitute into (4.7) and (4.9), similar to the univariate case. Predictive resampling again only requires
sampling d independent uniform random variables for each forward step and computing the update.

4.4 Regression

We now consider extending the copula method and predictive resampling to the regression setting, where
we have univariate yi ∈ R (which can be easily extended to multivariate) with corresponding covariates
xi ∈ X , where for example X = Rd. We will later also consider binary regression, where yi ∈ {0, 1}.
One assumption is that the covariates are random, where we write {yi,xi}

iid∼ f0(y,x), and we are
interested in f0(yi | xi). We term this the ‘joint method’, as we infer the full joint f0(yi,xi) from which
the conditional then follows. Examples of this are Müller et al. (1996); Shahbaba and Neal (2009);
Hannah et al. (2011), where the prior on f0(yi,xi) is a DPMM. The second type of assumption, which
we call the ‘conditional method’, is the more common framework. Here we assume that x1:n are fixed
design points and the randomness arises from the response y1:n, so we infer a family of conditional
densities {fx(y) : x ∈ X}. The most common framework is the additional assumption of yi = g(xi) +
ϵi, where ϵi are independent zero-mean noise, and a prior on the mean function g is assumed, e.g. a
Gaussian process (Rasmussen, 2003). Alternatively, one can elicit a prior on {fx(y) : x ∈ X} directly,
for example with mixture models based on the dependent Dirichlet process (MacEachern, 1999). We
recommend Wade (2013); Wade et al. (2014); Quintana et al. (2020) for thorough reviews.

4.4.1 Joint method

The joint method follows easily from the multivariate: we first estimate the joint predictive density
pi+1(y,x), then compute the conditional pi+1(y | x) = pi+1(y,x)/pi+1(x). Utilizing (4.8), we have
the tractable update for the conditional density

pi+1(y | x) = pi(y | x)

{
1− αi+1 + αi+1cρy(qi, ri)

∏d
j=1 cρx

(
uji , v

j
i

)}
{
1− αi+1 + αi+1

∏d
j=1 cρ

(
uji , v

j
i

)} (4.11)

where
qi = Pi(y | x), ri = Pi(yi+1 | xi+1)

uji = Pi

(
xj | x1:j−1

)
, vji = Pi

(
xji+1 | x

1:j−1
i+1

)
.

(4.12)
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Here, we can have separate bandwidths for y and x, and even one for each dimension of x. The updates
for qi+1, ri+1, u

j
i+1, v

j
i+1 are the same as in (4.9), and again all terms are tractable. Predictive resampling

in this case requires simulating both {Y,X} ∼ Pi(y,x) just like in (4.10).

4.4.2 Conditional method

When x is high-dimensional, it may be cumbersome to model pn(x) when we are only interested in
the conditional density. The conditional method models p(y | x) directly, and we turn to the dependent
Dirichlet process (DDP) and its extensions for inspiration. In particular, consider the general covariate-
dependent stick-breaking mixture model

fGx(y) =

∫
N (y | θ, 1) dGx(θ), Gx =

∞∑
k=1

wk(x) δθ∗k

where wk(x) follows an x-dependent stick-breaking process, and θ∗k
iid∼ N (θ | 0, τ−1). A full derivation

is provided in Appendix E.2.2. We can show that the update step of the predictive takes the form

pi+1(y | x) =
{
1− αi+1(x,xi+1) + αi+1(x,xi+1) cρy (qi, ri)

}
pi(y | x) (4.13)

where α1(x,x
′) =

∑∞
k=1E [wk(x)wk(x

′)], ρy = 1/(1 + τ) and qi, ri are as in (4.12). The term
α1(x,x

′) is tractable for some choices of the construction of wk(x), e.g. the kernel stick-breaking
process (Dunson and Park, 2008). Unfortunately this does not provide guidance on how to generalize to
αi(x,x

′). Instead, we turn to the joint copula method in the previous section for inspiration, which can
be written as (4.13) with

αi(x,x
′) =

αi
∏d

j=1 cρx

(
uji−1, v

j
i−1

)
1− αi + αi

∏d
j=1 cρx

(
uji−1, v

j
i−1

) ·
This form of αi(x,x

′) can be viewed as a distance measure between x and x′ that is dependent on
Pn(x) which is updated in parallel. To avoid modelling Pn(x), we can simplify the above and consider
the following as a distance function directly:

αi(x,x
′) =

αi
∏d

j=1 cρxj
{
Φ
(
xj
)
,Φ
(
x′j
)}

1− αi + αi
∏d

j=1 cρxj {Φ (xj) ,Φ (x′j)}
(4.14)

which is equivalent to the joint method but leaving Pn(x) = P0(x) without updating, providing us an
increase in computational speed. This form requires x1:n to be standardized for good performance, and
we find that specifying independent bandwidths for each dimension in x works well. This method is
similar to the normalized covariate-dependent weights of Antoniano-Villalobos et al. (2014).

If x1:n is indeed a subsequence of a deterministic sequence of design points x1,x2, . . ., then pre-
dictive resampling simply involves selecting xi for i > n from this sequence, and drawing [Yi+1 |
xi+1] ∼ Pi(y | xi+1). If X1:n is actually random and we have chosen the conditional approach simply
for convenience, then we can draw the future Xn+1:N from the sequence of empirical predictives as in
the Bayesian bootstrap. We have however noticed some numerical sensitivity to this choice of Pn(x)
in the uncertainty in pn(y | x) for x far from the observed dataset; this is illustrated in Appendices
G.5 and G.6. Once again, conditional on Xi+1 = xi+1, we have that Pi(Yi+1 | xi+1) ∼ U [0, 1], so
predictive resampling only consists of simulating independent uniform random variables and updating.
An example of using the Bayesian bootstrap for the covariates is provided in Appendix G.6.

4.4.3 Classification

For classification, both the joint and conditional approach generalize easily to when yi ∈ {0, 1}. To this
end, we can derive the copula update for a beta-Bernoulli mixture. As shown in Appendix E.3, this gives
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dρy{qi, ri} =


1− ρy + ρy

qi ∧ ri
qi ri

if y = yi+1

1− ρy + ρy
qi − {qi ∧ (1− ri)}

qi ri
if y ̸= yi+1

where qi = pi(y | x), ri = pi(yi+1 | xi+1) and ρy ∈ (0, 1). We can simply replace the bivariate
Gaussian copula density cρy(qi, ri) in (4.11) and (4.13) with dρy(ui, vi). One can check that qi is indeed
a martingale when predictive resampling, and forward sampling can be done directly as drawing binary
Yn+1 from the Bernoulli predictive is straightforward. Unfortunately, we do not have the useful property
of Pi(yi+1) ∼ U [0, 1] in the discrete case, so predictive resampling beyond the Bayesian bootstrap for
Xn+1:N is computationally expensive at O(N2), or approximation via a grid is required. The Bayesian
bootstrap for Xn+1:N is still feasible as we only need to compute pN (y | x) at the observed x1:n. An
example of this method is provided in Appendix G.5.

4.5 Practical considerations

In this subsection, we discuss some practical considerations. Further details, such as those regarding
sampling and optimization, are given in Appendix F.

4.5.1 Initial density

For the copula methods, we require an initial guess p0(y) to begin our recursive updates, which can
contain prior information. As it is a statement on observables, it is easier to elicit than a traditional
Bayesian prior. In practice, we recommend standardizing each variable in the data yj1:n to have mean
0 and variance 1 and using the default initialization N (yj | 0, 1) for each dimension in an empirical
Bayes fashion. For discrete variables, a suitable default choice is the uniform distribution over the
classes. Finally, in the regression case, we can include prior information on the regression function, e.g.
p0(y | x) = N (y | βTx, 1). However, p0(y | x) = N (y | 0, 1) tends to work well as a default choice.

4.5.2 Hyperparameters

As we recommend the fixed form of αi in (4.6), the only hyperparameter in the copula update is the
constant ρ which parameterizes the bivariate normal copula in (4.5). While Hahn et al. (2018) suggest a
default choice for ρ, we prefer a data-driven approach. Fortunately, there is an obvious method to select
ρ using the prequential log score of Dawid (1984), that is to maximize

∑n
i=1 log pi−1(yi) for density

estimation or
∑n

i=1 log pi−1(yi | xi) for regression, which is related to a cross-validation metric (Gneit-
ing and Raftery, 2007; Fong and Holmes, 2020). This fits nicely into our simulative framework, as ρ is
selected on how well the sequence of predictives forecasts consecutive data points, which then informs
us on the future predictives for predictive resampling. We can also specify a separate ρj for each dimen-
sion, which corresponds to differing length scales for the update from each conditional distribution. For
optimization, gradients with respect to ρ can be computed quickly using automatic differentiation.

4.5.3 Permutations

Due to our relaxation of exchangeability in Section 3.2, one downside to the copula update and c.i.d.
sequences in general is the dependence of pn on the permutation of y1:n when there is no natural ordering
of the data. For permutation invariance, we can average pn and the corresponding prequential log-
likelihood over M random permutations of y1:n. We find in practice that M = 10 is sufficient, which
is computationally feasible for moderate n due to the speed of the copula update, and the method is
also parallelizable over permutations. For predictive resampling, we then begin with the permutation
averaged pn and forward sample with the copula update. From asymptotic exchangeability in Theorem
3 in Section 6.1, averaging over permutations is not required for forward sampling providedN is chosen
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to be sufficiently large. Theoretical properties of permutation averaging are explored in Tokdar et al.
(2009); Dixit and Martin (2019), which we do not consider here.

4.5.4 Computational complexity

For computing pn(y) in the multivariate copula method, there is an overhead of first computing vji
for j ∈ {1, . . . , d}, i ∈ {0, . . . , n − 1} using (4.9), which requires O

(
n2d
)

operations, followed
by O (nd) operations to compute pn(y) at a single y (which is then parallelizable). After computing
pn(y), predictive resampling N future observables requires O (Nd) for each sample of pN (y); this is
fully parallelizable across test points and posterior samples. Interestingly, we first compute pn(y) and
only predictively resample after if uncertainty is desired, allowing for large computational savings if we
are only interested in prediction. The regression methods have a similar computational cost.

5 Illustrations

In this section, we demonstrate the martingale posteriors induced by the copula methods of the previ-
ous section. Code for all experiments is available online at https://github.com/edfong/MP.
We will demonstrate the copula method on examples where θ0 is the density itself or the loss function
induces a simple parameter, e.g. quantiles. However, any θ0 of interest (as in Section 2.2.2) can tech-
nically be computed directly from the density or from y1:n and samples of Yn+1:∞, although this may
require a high-dimensional grid or relatively expensive sampling. As a result, for cases with complex
loss functions that do not rely on the smoothness of F∞ (e.g. a parametric log-likelihood), we recom-
mend the Bayesian bootstrap instead as a computationally efficient predictive resampling approach. For
examples regarding the Bayesian bootstrap, we refer the reader to the references in Section 2.4, and we
qualitatively compare the Bayesian bootstrap and the copula methods in Section 7.

For all examples, we follow the recommendations of Section 4.5 for P0 and averaging over permuta-
tions. We will demonstrate the monitoring of convergence to P∞, but we setN = n+5000 as a standard
default for the number of forward samples, where n is the size of the dataset. All copula examples are
implemented in JAX (Bradbury et al., 2018), which is a Python package popular in the machine learn-
ing community. JAX is ideal for our copula updates: its just-in-time compilation facilitates a dramatic
speed-up for our iterative updates especially on a GPU, and its efficient automatic differentiation allows
for quick hyperparameter selection. Note that the first execution of code induces an overhead compila-
tion time of between 10-20 seconds for all examples. We carry out all copula experiments on an Azure
NC6 Virtual Machine, which has a one-half Tesla K80 GPU card. The copula methods consist of many
parallel simple computations on a matrix of density values, which is very suitable for a GPU, unlike
traditional MCMC. The DPMM with MCMC examples are implemented in the dirichletprocess
package (Ross and Markwick, 2018), which utilizes Gibbs sampling. Other benchmarks are imple-
mented in sklearn (Pedregosa et al., 2011). Unless otherwise stated, default hyperparameter values
are set for baselines. As the baseline packages are designed for CPU usage, we run them on a 2.6 GHz
6-Core Intel Core i7-8850H CPU. Further details can be found in Appendix G.2.

5.1 Density estimation

5.1.1 Univariate Gaussian mixture model

We begin by demonstrating the validity of the martingale posterior uncertainty returned from predictive
resampling by comparing to a traditional DPMM in a simulated example, where the true density is
known. We also discuss the monitoring of convergence of predictive resampling. For the data, we
simulate n = 50 and n = 200 samples from a Gaussian mixture model:

f0(y) = 0.8N (y | −2, 1) + 0.2N (y | 2, 1).
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For all plots, we compute the copula predictive pn(y) on an even grid of size 160. Figures 3 and 4
show the martingale posterior density using the copula method for n = 50 and n = 200 respectively,
compared to the traditional DPMM of Escobar and West (1995) with MCMC. We draw B = 1000
samples for both methods. We see that the resulting uncertainty and posterior means are comparable
between the copula and DPMM, and the uncertainty decreases as n increases. The true density is largely
contained within the 95% credible intervals.

For predictive resampling with the copula method, we judge convergence by considering the L1

distance between the forward sampled pN and initial pn. This is demonstrated in Figure 5 for a single
forward sample for n = 50. On the left, we have a numerical estimate of ∥pN − pn∥1 which converges
to a constant, and likewise for ∥PN − Pn∥1 on the right, where ∥·∥1 is the L1 norm and is computed
on the grid. We see in this example that N = n+ 5000 is sufficiently large for pN to approximate p∞.
When we are not plotting on a grid and instead predicting over some test set, we may instead monitor

1

ntest

ntest∑
i=1

|pN (yi)− pn(yi)|.

Optimization of the prequential log-likelihood gives us the optimal hyperparameter ρ = 0.77 and
0.78 for n = 50 and 200 respectively. The prequential log-likelihood is returned easily from the copula
method, allowing for easy hyperparameter selection. However, computing the marginal likelihood for
the DPMM is non-trivial, and thus setting the hyperparameters of the priors in a data-driven way, that
is empirical Bayes, remains a difficult task. Here, we select the DPMM hyperparameters to match the
smoothness of the posterior mean of the copula method for comparability of the uncertainty.
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Figure 3: Posterior mean ( ) and 95% credible interval ( ) of (a) pN (y) for the copula method and
(b) p∞(y) for the DPMM, for n = 50 with true density ( ) and data ( )
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Figure 4: Posterior mean ( ) and 95% credible interval ( ) of (a) pN (y) for the copula method and
(b) p∞(y) for the DPMM, for n = 200 with true density ( ) and data ( )
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Figure 5: Estimated L1 distance (a) ∥pN − pn∥1 and (b) ∥PN − Pn∥1 for a single forward sample for
n = 50

5.1.2 Univariate galaxy dataset

We now demonstrate the martingale posterior sampling of a parameter of interest that requires a smooth
density, through predictive resampling and the computation of θ(PN ). We analyze the classic ‘galaxy’
dataset (Roeder, 1990), thereby extending the example of Hahn et al. (2018) to the predictive resampling
framework. The dataset consists of n = 82 velocity measurements of galaxies in the Corona Borealis
region. For all plots, we compute p(y) on an even grid of size 200, and unnormalize after the copula
method so that the scale of y is in km/sec.

Figure 6 compares predictive resampling with the copula method forB = 1000 posterior samples of
pN , where the selected bandwidth is ρ = 0.93. The bandwidth for KDE was computed through 10-fold
cross-validation, and DPMM hyperparameters are set to the suggested values in West (1991). The 95%
credible intervals and posterior mean of the copula approach are comparable with that of the DPMM.
Excluding compilation times, the optimization for ρ and computation of pn(y) on the grid of size 200
took 0.5 seconds, and predictive resampling took 2 seconds. In comparison, DPMM with MCMC took
25 seconds for the same number of samples (B = 1000), where the samples are not independent; the
plots for MCMC are thus produced with B = 2000. Given this random density, we can also compute
the statistics of interest θ directly from the grid of density values. Martingale posterior samples of the
number of modes and 10% quantiles of the random density are shown in Figure 7, with comparison to
the DPMM. Here the copula method tends to prefer 4 modes, whereas the DPMM prefers 5.
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Figure 6: Posterior mean ( ) and 95% credible interval ( ) of (a) pN (y) for the copula method and
(b) p∞(y) for the DPMM, with KDE ( ) and data ( )
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Figure 7: (a) Posterior samples of number of modes for the copula method ( ) and DPMM ( );
(b) Posterior density of 10% quantiles for the copula method ( ) and the DPMM ( )

5.1.3 Bivariate air quality dataset

We demonstrate the martingale posterior for bivariate data using the method of Section 4.3.1, which has
large computational gains over posterior sampling with DPMM when the density is of interest, where
the latter is expensive due to dimensionality. For this, we look at the ‘airquality’ dataset (Chambers,
2018) from DPpackage. The dataset consists of daily ozone and solar radiation measurements in New
York, with n = 111 completed data points. For all plots, we compute pn(y) on a grid of size 25× 25.

We fit the multivariate copula method of Section 4.3.1 with one bandwidth per dimension, and
optimizing the prequential log-likelihood returns ρ = [0.47, 0.82]. Predictive resampling B = 1000
martingale posterior samples returns us the martingale posterior mean and standard deviation of the
bivariate density as shown in Figure 8. Again excluding compilation times, the optimization for ρ and
computation of pn(y) on the grid of size 625 took 1 second, and predictive resampling took 10 seconds
in total. For comparison, the DPMM with MCMC required 4 minutes for the same number of samples.
Further details and comparisons to the DPMM are given in Appendix G.4.

Figure 9 plots a martingale posterior sample of the density, with the corresponding L1 distance
convergence plot. We see that N = 5000 is again sufficient, which suggests a dimension independent
convergence rate of PN → P∞. This is justified in the theory in Section 6.
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Figure 8: Posterior (a) mean and (b) standard deviation of pN (y) for the copula method with scatter plot
of data ( )
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Figure 9: (a) Random sample of pN (y); (b) Corresponding estimated ||pN − pn||1

5.1.4 Multivariate UCI datasets

In this section, we demonstrate the multivariate copula method of Section 4.3.1 as a highly effective
density estimator compared to the usual DPMM, as we do not need to deal with the posterior sampling
or integration over high-dimensional parameters. We demonstrate on multivariate datasets from the UCI
Machine Learning Repository (Dua and Graff, 2017). To prevent misleadingly high density values, we
remove non-numerical variables and one variable from any pairs with Pearson correlation coefficient
greater than 0.98 (e.g. see Tang et al. (2012)). We compare to the KDE, DPMM and multivariate
Gaussian, and evaluate the methods with a 50-50 test-train split and average the test log-likelihoods over
10 random splits.

For the copula method, we use a single value of ρ for all dimensions for a fair comparison to the
KDE. We find that having distinct ρ1:d slightly improves predictive performance at the cost of higher
optimization times. For the KDE, we use a single scalar bandwidth set through 10-fold cross-validation.
For the DPMM, we set the Gaussian kernel to have diagonal covariance matrices and use VI (Blei and
Jordan, 2006). Using a full covariance matrix kernel is unreliable likely due to local optima for VI,
and MCMC is too computationally expensive for large d. For the multivariate Gaussian, we use the
empirical mean and covariance.

Dataset n d Gaussian KDE DPMM (VI) Copula
Breast cancer 569 26 −17.8 (0.61) −25.6 (0.29) −33.4 (0.80) -13.0 (0.26)
Ionosphere 351 32 −49.4 (1.97) −32.3 (0.79) −36.5 (0.59) -21.5 (1.63)
Parkinsons 195 16 −14.3 (0.54) −15.6 (0.41) −25.7 (0.92) -9.9 (0.28)
Wine 178 13 −16.1 (0.26) −15.7 (0.20) −22.8 (0.61) -14.6 (0.17)

Table 1: Average test log-likelihood, standard errors (in brackets) and best performance in bold

As shown in Table 1, the performance is significantly better on test data for these datasets. The better
performance than the KDE is likely due to the regularizing effect of p0(y), which is important here as
n is only of moderate size. The DPMM (VI) likely performs poorly as the diagonal covariance cannot
capture dependent structure, and the number of variational parameters is still high so optimization is
difficult. We provide a more detailed analysis of the degradation in performance with dimensionality of
the DPMM with VI in Appendix G.7, where the copula method remains robust to dimensionality.

Overall, the run-times for the copula method, KDE and DPMM (VI) are similar, all of which are
orders of magnitude faster than the DPMM with MCMC. For a single train-test split, the slowest example
of the above (Breast cancer) for the copula method required less than 4 seconds in total to optimize ρ,
while computing the overhead vji and predicting on the test data required less than 100ms. For the same
example, the KDE and DPMM (VI) required around 1.5 and 6 seconds respectively.
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5.2 Regression and classification

5.2.1 Regression in LIDAR dataset

We now demonstrate the joint copula regression method of Section 4.4.1 on a non-linear heteroscedastic
regression example, where the copula method performs well off-the-shelf. We use the LIDAR dataset
from Wasserman (2006), which consists of n = 221 observations of the distance travelled by the light
and the log ratio of intensity of the measured light from the two lasers; the latter is the dependent
variable. For the plots below, we evaluate the conditional density on a y, x grid of 200× 40 points.

For the copula method, we optimize the prequential conditional log-likelihood over the M = 10
permutations, and get ρy = 0.90, ρx = 0.83. The predictive mean and 95% central interval of pn(y | x)
are shown in Figure 10, compared to the DPMM, and we observe that the copula methods handle the
nonlinearity better. The optimization, fitting and prediction on the grid took under 4 seconds for the
copula method, compared to 5 minutes for the DPMM with MCMC for the same number of samples.

In Figure 11, we see martingale posterior samples of pN (y | x = 0) for the copula method compared
to the DPMM. For reference, predictive resampling the B = 1000 martingale posterior samples on the
y grid for a single x took under 3 seconds. One can see in Figure 11 that there is more posterior
uncertainty in the density pN (y | x = 0) for the copula methods, as the DPMM has a simpler mean
function (weighted sum of linear). Convergence of the conditional density under predictive resampling
is now dependent on the value of x. Figure 13(b) shows the L1 distances as before for x = 0; however,
we find that more forward samples are needed for x far from the data. Figure 12 then shows martingale
posterior samples of pN (y | x = −3) where x is far from the data, and we see that both the copula and
DPMM method have larger uncertainty as expected. However, predictive resampling for the conditional
copula method of Section 4.4.2 does not always demonstrate this desirable behaviour for outlying x;
the joint and conditional methods are compared in Appendix G.6 and this undesirable behaviour is also
noted in Appendix G.5.

One may also be interested in the uncertainty in a point estimate for the function which we write as
θx, in this case the conditional median. In Figure 13(a), we plot the martingale posterior mean and 95%
credible interval of the conditional median of PN (y | x), where we see the uncertainty increasing with
x . Here we predictively resample on a y, x grid of size 40 × 40 and compute the median numerically;
this took 12 seconds for B = 1000 samples.
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Figure 10: pn(y | x) ( ) with 95% predictive interval ( ) for the (a) joint copula method and (b) joint
DPMM, with data ( )

5.2.2 Multivariate covariates in UCI datasets

We now demonstrate the conditional copula method for prediction in the regression and classification
setting with multivariate covariates, which is of particular interest to the machine learning community.
For high-dimensional covariates, the conditional copula method performs better than the joint method,
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Figure 11: Posterior mean ( ) and 95% credible interval ( ) of (a) pN (y | x = 0) for the joint copula
method and (b) p∞(y | x = 0) for the joint DPMM
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Figure 12: Posterior mean ( ) and 95% credible interval ( ) of (a) pN (y | x = −3) for the joint copula
method and (b) p∞(y | x = −3) for the joint DPMM
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Figure 13: (a) Posterior mean ( ) and 95% credible interval ( ) of the conditional median ofPN (y | x),
with data ( ); (b) Estimated L1 distance ∥pN (· | x)−pn(· | x)∥1 for a single forward sample with x = 0

both in terms of computational speed and test log-likelihood. This is likely due to the dominance of
estimating Pn(x) in high dimensions, which disrupts the estimate of Pn(y | x).

Similar to the multivariate density estimation, we demonstrate the regression and classification con-
ditional copula methods on UCI datasets with scalar y and multivariate x. Again, we evaluate the
methods with 10 random 50-50 test-train splits and evaluate the average test conditional log-likelihoods.
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We convert categorical variables into dummy variables, and report the preprocessed covariate dimen-
sionality in Table 2. We compare to Bayesian linear regression and Gaussian processes (GP) with a
single length scale RBF kernel as baselines for regression, and similarly to logistic regression and GPs
with the logistic link and Laplace approximation for classification. We use the Laplace approximation
as it is available off-the-shelf in sklearn, and we found that independent kernel length scales (ARD)
performed worse due to overfitting given n is moderate. For the conditional copula method, we have
distinct bandwidths ρ1:d for each covariate, which we optimize through the prequential log-likelihood
over M = 10 permutations.

Dataset n d Linear GP Copula
Regression Boston 506 13 −0.842 (0.043) −0.404 (0.040) −0.351 (0.025)

Concrete 1030 8 −0.965 (0.008) −0.364 (0.014) −0.445 (0.013)
Diabetes 442 10 −1.096 (0.017) −1.089 (0.015) −1.003 (0.018)
Wine Quality 1599 11 −1.196 (0.017) −0.497 (0.034) −1.143 (0.020)

Classification Breast cancer 569 30 −0.107 (0.005) −0.105 (0.005) −0.096 (0.008)
Ionosphere 351 33 −0.348 (0.005) −0.304 (0.006) −0.388 (0.016)
Parkinsons 195 22 −0.352 (0.007) −0.364 (0.013) −0.257 (0.010)
Statlog 1000 20 −0.530 (0.009) −0.542 (0.011) −0.541 (0.006)

Table 2: Average test log-likelihood, standard errors (in brackets) and best performance in bold

In Table 2, we see the test log-likelihoods, where the copula method is competitive with the GP,
though in general we find that the GP provides a better estimate for the mean function for regression.
Again, optimization took the most time due to the d bandwidths, taking on average 30 seconds per fold
for the slowest example (‘Statlog’). The time for actual fitting and prediction on the test set was under
120ms per fold for all examples. The GP on the slowest examples required around 20 seconds per fold
for the marginal likelihood optimizations, but computation time scales as O(n3).

6 Theory

In this section, we provide a theoretical analysis of the martingale posteriors and predictive resampling
using the copula update introduced in Section 4. We utilize the theory of c.i.d. sequences from the
works of Berti et al. (2004, 2013). We then show frequentist consistency (with little n) under relatively
weak conditions for the multivariate copula update by extending the proof of Hahn et al. (2018), and we
discuss its implications. All proofs are deferred to Appendix D.

6.1 Martingale posteriors for copula density estimation

We first analyze the properties under predictive resampling of the multivariate copula recursive update
for the martingale posterior. We write Pi(y) as the joint cumulative distribution function of the density
pi(y) with update (4.7), and consider predictive resampling starting at pn(y) such that Yi+1 ∼ Pi(y)
for i = n, n+1 . . . , N . As before, n corresponds to the number of observed data points, whereasN −n
corresponds to the number of forward samples drawn from predictive resampling. The first two results
follow directly from the c.i.d. property of the sequence.

Theorem 3. [Berti et al. (2004, Theorem 2.5)] The sequence YN+1,YN+2, . . . is asymptotically ex-
changeable, that is

(YN+1,YN+2, . . .)
d→ (Z1,Z2, . . .)

for N →∞, where (Z1,Z2, . . .) is exchangeable.

The above justifies that we may not need to average over permutations for sufficiently large N when
predictive resampling.

As mentioned in Section 3.2, we would like PN (y)→ P∞(y) at each y ∈ Rd, which indeed holds
for predictive resampling here from the c.i.d. sequence:
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Theorem 4. [Berti et al. (2004, Lemma 2.1, 2.4)] There exists a random probability measure P∞ such
that PN converges weakly to P∞ almost surely.

Specifically for the univariate case of the copula update above, we can strengthen this to convergence
in total variation, which also implies that the limiting predictive P∞ is continuous, following from an
interesting result in Berti et al. (2013).

Theorem 5. For y ∈ R, suppose the sequence of probability measures PN has density function pN (y)
and cumulative distribution function PN (y) satisfying the updates (4.4). Let us assume that the initial
Pn(y) is continuous and its density satisfies∫

K
p2n(y) dy <∞

for all K, where K is a compact subset of R with finite Lebesgue measure. For the sequence

αi =

(
2− 1

i

)
1

i+ 1
,

let us assume further that ρ < 1/
√
3. We then have

(a) P∞ is absolutely continuous with respect to the Lebesgue measure almost surely, with density p∞.

(b) PN converges in total variation to P∞ almost surely, that is

lim
N→∞

∫
|pN (y)− p∞(y)| dy = 0 a.s.

The assumptions hold if pn(y) is continuous. From this, we are justified in using pN (y) as an
approximate sample of the martingale posterior p∞(y). We conjecture that the choice of ρ < 1/

√
3 can

be relaxed, and empirically it seems the case. Furthermore, this restriction on ρ is not needed if αi =
(i + 1)−1. Unfortunately, we have been unable to extend Theorem 5 to the multivariate copula update,
as the update for P

(
yj | y1:j−1

)
is not as easy to bound. We also conjecture that the L1 convergence

holds true in the multivariate case, and again the empirical results suggest so.
We can also quantify to some degree the convergence rate to P∞ as we predictively resample. We

have the following result from a variant of the Azuma-Hoeffding inequality from McDiarmid (1998).

Proposition 1. For M > N and any ϵ ≥ 0, the cumulative distribution function PN (y) of the density
in (4.7) satisfies

sup
y

P (|PM (y)− PN (y)| ≥ ϵ) ≤ 2 exp

(
−ϵ2

2ϵαN+1

3 + 1
2

∑M
i=N+1 α

2
i

)
.

Taking the limit (superior) as M →∞ of the above gives insight into the quality of the approxima-
tion of P∞ when we truncate the predictive resampling at PN . For our choice of αi from (4.6), we have∑∞

i=N+1 α
2
i = O(N−1), so the limiting probability of a difference greater than ϵ decreases roughly at

rate exp(−ϵ2cN) for some constant c. Notably, this rate is independent from the dimensionality d, and
instead depends only on the sequence αi. Furthermore, we have some notion of posterior contraction in
Proposition 1 if we instead consider N as the number of observed data points and M as the number of
forward samples.

6.2 Martingale posteriors for conditional copula regression

For the regression case where y ∈ R, x ∈ Rd, we analyze the update given in (4.13) and (4.14).
Assuming we have observed y1:n,x1:n, we draw the sequence Xn+1:∞ from the Bayesian bootstrap
with x1:n. While this is no longer the traditional c.i.d. setup, we still have that PN (y | x) is a martingale
under predictive resampling, so we have that PN (y | x) converges pointwise for each x almost surely.
Fortunately, Berti et al. (2006, Theorem 2.2) assures that the martingale posterior P∞(y | x) exists.
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Theorem 6. For each x ∈ Rd, there exists a random probability measure P∞(· | x) such that PN (· | x)
converges weakly to P∞(· | x) almost surely.

We also have the appropriate extension to Proposition 1 below.

Proposition 2. For M > N and any ϵ ≥ 0, the cumulative distribution function PN (y | x) of the
density in (4.13) satisfies

sup
y

P (|PM (y | x)− PN (y | x)| ≥ ϵ) ≤ 2 exp

(
−ϵ2

4ϵCαN+1

3 + 2C2
∑M

i=N+1 α
2
i

)

for each x ∈ Rd, where C depends only on ρ and x.

It can be shown that C increases as x moves from the origin. Assuming x1:n is standardized, this
implies that the number of forward samples needed for convergence may increase as x shifts away from
the data. The above results can also be easily extended to the classification scenario.

6.3 Frequentist consistency of copula density estimation

To simulate from the martingale posterior given Y1:n, we start with the density pn computed from (4.7),
so we would like to verify that it is indeed an appropriate predictive density. In this subsection, we
thus concern ourselves with the frequentist notion of consistency, that is we look at the properties of the
density estimate pn assuming Y1:n is i.i.d. from some probability distribution with density function f0
as we take n→∞. It should be noted that this is distinct from the Doob-type asymptotics of predictive
resampling in the previous subsections where we take N →∞.

The frequentist consistency of the univariate copula method was first discussed in Hahn et al. (2018)
based on the ‘almost supermartingale’ of Robbins and Siegmund (1971). We will now extend the result
to the multivariate copula method, of which the univariate method is a special case. The full proof
can be found in Appendix D.6. Instead of the Kullback-Leibler divergence, we work with the squared
Hellinger distance between probability density functions p1 and p2 on y ∈ Rd, defined asH2(p1, p2) :=
1−

∫ √
p1(y) p2(y) dy. We then have the main result.

Theorem 7. For Y1:n
iid∼ f0, suppose the sequence of densities pn(y) satisfies the updates in (4.7).

Assume that ρ ∈ (0, 1), αi = a(i + 1)−1 where a < 2/5, and there exists B < ∞ such that
f0(y)/p0(y) ≤ B for all y ∈ Rd. We then have that pn is Hellinger consistent at f0, that is

lim
n→∞

H2(pn, f0) = 0 a.s.

Intuitively, the update (4.7) can be regarded as a stochastic gradient descent in the space of probabil-
ity density functions, where αi+1 is the step-size. As is standard in stochastic optimization (Kushner and
Yin, 2003), consistency of the copula method relies delicately on the decay of the sequence αi, which
ensures we approach the independent copula at the correct rate. A similar condition is for example dis-
cussed in Tokdar et al. (2009) for Newton’s algorithm. On the one hand, we require

∑∞
i=1 αi = ∞ to

ensure that the initialization p0 is forgotten. On the other hand, we require the sequence αi to decay suf-
ficiently quickly to 0, that is

∑∞
i=1 α

2
i < ∞, for information to accumulate correctly. The requirement

on a also ensures the information in later terms decay properly. Notably, the condition on a < 2/5 is
different to the suggestion for predictive resampling, so a different choice of αn may be more suitable
when consistency is of primary interest. The second assumption is a regularity condition on the tails
of the initial p0 being heavier than f0, which motivates a heavy-tailed initial density as also suggested
by Hahn et al. (2018). Interestingly, the bounded condition on f0/p0 is the only requirement on f0
for consistency, which follows from the nonparametric update. However, unlike the KDE there are no
conditions on the bandwidth ρ, which likely follows from the data-dependence of the copula kernel.

There are a number of unanswered questions when compared to the consistency of traditional Bayes.
The first is whether the martingale posterior converges weakly to the Dirac measure at F0, as we have
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only shown Hellinger consistency of the posterior mean measure of P∞. We believe this is likely to be
positive, as there is a notion of posterior contraction as in Proposition 1. A related inquiry is the rate of
convergence of pn, or the martingale posterior on p∞, to the true f0. The second and more ambitious
question is whether the above approach provides a general method to prove consistency for other copula
models. For the multivariate copula method, we only require the weak tail condition on f0, but the
proof relies heavily on the nonparametric nature of the update. It is still unclear what the conditions
would be if the copula sequence corresponded to a parametric Bayesian model, such as the examples
given in Hahn et al. (2018). In the absence of the prior under the predictive view, a question of interest
is whether an analogue to the Kullback-Leibler property of the traditional Bayesian prior (e.g. Ghosal
and van der Vaart (2017, Definition 6.15)) exists, which would highlight a predictive notion of model
misspecification.

7 Discussion

We see that Bayesian uncertainty at its core is concerned with the missing observations required to know
any statistic of interest precisely. In the i.i.d. case, this is Yn+1:∞, and our task is to obtain the joint
distribution p(yn+1:∞ | y1:n), which is simplified through the factorization into a sequence of 1-step
ahead predictive densities. One open question is whether there are more general methods to elicit this
joint beyond the likelihood–prior construction and the prequential factorization. For the more general
data setting, the Bayesian would be tasked with eliciting p(ymis | yobs), where the missing observations
ymis would be specific to the setting and statistic of interest. We highlight that ymis must be sufficiently
large to compute the statistic precisely, unlike in multiple imputation (Rubin, 2004) where the imputed
data is often finite and for computational convenience. For future work, identifying ymis and extending
the methodology in more complex data settings such as time series or hierarchical data is of primary
interest.

In terms of practical methodology, it is worth comparing when one would prefer to use the Bayesian
bootstrap versus the copula methods. When the data is high-dimensional but a low-dimensional statistic
is of interest, the copula methods may not be suitable, as computing the density on a grid or sampling
the data directly is required. Fortunately, the Bayesian bootstrap shines in this setting. On the other
hand, the discreteness of the Bayesian bootstrap makes it unsuitable for when smoothness is required,
for example when the density is directly of interest, or in regression where we rely on smoothness with
x. In these settings, the copula methods are highly suitable. Together, the predictive framework allows
us to cover a wide variety of settings with practical advantages over the traditional Bayesian approach.

We believe our framework offers interesting insight into the interplay between Bayesian and frequen-
tist approaches. As we have seen through the lens of the Bayesian bootstrap, Bayesians and frequentists
are concerned with Yn+1:∞ and Y1:n respectively. Analysis of the frequentist asymptotic properties
of martingale posteriors also offers new challenges, as we must work with the predictive distribution
directly, and it is unclear if the methods used in our paper generalize to other copula models. For gen-
eralizations of our martingale posterior framework, imputing aspects of the population instead of the
entire population directly may also help bridge the gap between Bayesian and frequentist methods. In
the hierarchical example in Section 1, we can in fact treat θi as the mean of population i from which we
observe a single sample yi. We would thus be imputing the means of observation populations (i.e. the
random effects) instead of the entire population of observables directly. This interpretation would align
well with our philosophy of only imputing what one would need to carry out the statistical task.
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