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• Learning from past experience  
  (e.g., building models of the world that can explain the observations). 

• Making predictions and generating explanations  
  (e.g., use learned models to generate understanding and explanation of observations) 

• Revising and extending learned knowledge, based on new information 
  (e.g., enable compositionality of learned models)  

• Communicate their learned knowledge to others 
  (e.g., support interpretability of learned models)

Human-Like Learning
“Human thought can be seen as a model-building activity.  

Human-like learning is the process of such model-building”[1] 

Humans are capable of performing cognitive activities: 

[1] Building machines that learn and thing like people, Brendan M. Lake, Tomer D. Ulman, Joshua B. Tenenbaum, et al., Behavioral and Brain Sciences, 40, 2017. 

To realise human-like levels of cognition, Machine Learning solutions have to realise the  
above activities. 



Advantages
• Ability to learn from unstructured data. 
• Very effective in solving specific tasks, 

sometimes better than humans. 

Drawbacks
• Data-intensive 
• Inability to generalise 
• Vulnerability to distributional shifts 

between training and test data 
• Learned models are not interpretable 
• Cannot use prior (or learned) 

knowledge 
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Symbolic Machine Learning can: 
• learn from small amount of (noisy) dataset 
• incorporate existing (partial) knowledge 
• learn human-readable models 
• support continuous and transfer learning
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Early algorithms and systems
Three Main Misconceptions: 

‣ Models expressing recursive concepts, non-monotonic 
assumptions, constraints, preferences, are thought to be too 
complex to be efficiently learned by a general purpose 
symbolic machine learning algorithm. 

‣ Symbolic machine learning is not robust to noise in the data. 

‣ Symbolic machine learning is not scalable to large datasets and 
large search spaces.
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learning default assumptions

Learning complex but interpretable models

succeeds(putdown, T) ← not happened(move(loc1,loc2),T-2)

falsity ← value(V, C1), value(V, C2), same_col(C1, C2). 
falsity ← value(V, C1), value(V, C2), same_row(C1, C2). 
falsity ← value(V, C1), value(V, C2), same_block(C1, C2). 

‣ Guaranteeing correct and safe decisions require 
learning constraints

‣ Assisting humans in their decision making require 
learning their preferences 1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance

:~ mode(Zone, walk), crime_rating(Zone, R), R > 4.[1@3] 
:~ mode(Zone, bus).[1@2] 
:~ mode(Zone, walk), distance(Zone, D).[D@1]
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abductive learning

Hail
Imparo

ASPAL

meta-level  
learning

XHail

abductive 
 learning

ILASP2

ILASP

ILASP3

Non-monotonic 
learning

Learning choices, constraints  
and preferences. Robust to noise.
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The ILASP Systems

Expressive Declarative Environment  
for Reasoning Logically

Answer Set Programming ILASP
Expressive Declarative Environment  

for Learning Logically

Desirable features for expressing (learned) knowledge in cognitive systems:
‣ Defaults and exceptions can be modelled using negation as failure 
‣ Non-determinism and choice can modelled using choice rules 
‣ Preferences can be modelled using weak constraints
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1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance

ILASP2

With equality
Without equality

Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

M. Law, A. Russo, K/ Broda. Learning weak constraints in answer set programming. TPLP 15(4-5), 2015.



Learning Preference Models

1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance

‣ ILASP2 is able to learn preferences, reaching 80% of 
accuracy from only 8 counter-examples. 

  

ILASP2

With equality
Without equality

Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

M. Law, A. Russo, K/ Broda. Learning weak constraints in answer set programming. TPLP 15(4-5), 2015.



Learning from Context-dependent Examples

1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance

M. Law, A. Russo, K. Broda. Iterative Learning of Answer Set Programs from Context Dependent Examples. TPLP. 16(5-6), 2016.

Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

To scale up the number of counter-examples,  
context-dependent counter-examples can be 
considered.

ILASP2i



Learning from Context-dependent Examples

1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

if it is not raining

if it is raining
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

M. Law, A. Russo, K. Broda. Iterative Learning of Answer Set Programs from Context Dependent Examples. TPLP. 16(5-6), 2016.

Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

To scale up the number of counter-examples,  
context-dependent counter-examples can be 
considered.

ILASP2i



1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance
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ILASP2

Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

To scale up the number of counter-examples,  
context-dependent counter-examples can be 
considered.

ILASP2i

Learning from Context-dependent Examples

M. Law, A. Russo, K. Broda. Iterative Learning of Answer Set Programs from Context Dependent Examples. TPLP. 16(5-6), 2016.



1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance
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ILASP2

Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

To scale up the number of counter-examples,  
context-dependent counter-examples can be 
considered.

‣ ILASP2i is able to learn preferences from large number of 
examples. 

 

ILASP2i

Learning from Context-dependent Examples

M. Law, A. Russo, K. Broda. Iterative Learning of Answer Set Programs from Context Dependent Examples. TPLP. 16(5-6), 2016.



Learning from Noisy Examples

1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance

Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

Counter-examples might be noisy as humans 
might not know what they prefer.

ILASP3

M. Law, A. Russo, K. Broda. Iterative Learning of Answer Set Programs from Noisy Examples. Advances in Cognitive Systems. Vol 6, 2018.



Learning from Noisy Examples

1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance

Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

if it is not raining

Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

if it is raining

mislabelled

Counter-examples might be noisy as humans 
might not know what they prefer.

ILASP3

M. Law, A. Russo, K. Broda. Iterative Learning of Answer Set Programs from Noisy Examples. Advances in Cognitive Systems. Vol 6, 2018.



Learning from Noisy Examples

1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance
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Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

Counter-examples might be noisy as humans 
might not know what they prefer.

ILASP3

M. Law, A. Russo, K. Broda. Iterative Learning of Answer Set Programs from Noisy Examples. Advances in Cognitive Systems. Vol 6, 2018.



Learning from Noisy Examples

1. Avoid walking through    area with high crime     rating.

2. Minimise walking     distance

Suggest user different alternatives: 
Journey A

• Walk 2km through 
an area with crime 
rating of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through 
an area with crime 
rating 5. 

Journey C

•Take the bus 400m 
through an area with 
crime rating of 2.

•Take a second bus 
3km through an area 
with crime rating 4

Journey D

•Take a bus 2km 
through an area with 
crime rating 5.

•Walk 2km through 
an area with crime 
rating 1.

Generate counter example
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

User chooses AGenerate counter-examples
Journey A

• Walk 2km through an 
area with crime rating 
of 2. 

•Take the bus 3km 
through an area with 
crime rating 4. 

Journey B

• Take the bus 4km 
through an area with 
crime rating of 2

•Walk 1km through an 
area with crime rating 5. 

1. Avoid walking through    area with high crime     rating.

2. Minimise the number    of buses.

3. Minimise walking     distance
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Objective is to learn human preferences from human's choices, and provide them with 
optimal, personalised suggestions with explanation.

Counter-examples might be noisy as humans 
might not know what they prefer.

ILASP3

‣ ILASP3 is as effective as ILASP2i, but able to learn from noisy 
examples. 

 

M. Law, A. Russo, K. Broda. Iterative Learning of Answer Set Programs from Noisy Examples. Advances in Cognitive Systems. Vol 6, 2018.



Learning Complex Definitions
Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard) 
decision problems.

3
2

1 1

2
3

2
11 2

3 4

Positive examples:                        Negative examples:

1{ size(1), size(2), size(3), size(4) }1.
node(1..S) :- size(S).
0{ edge(V0, V1) }1 :- node(V0), node(V1).

Background:

M. Law, A. Russo, K. Broda. The complexity and generality of learning answer set programs. Artificial Intelligence Journal, 2018.



Learning Complex Definitions
Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard) 
decision problems.

3
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2
11 2
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Positive examples:                        Negative examples:

1{ size(1), size(2), size(3), size(4) }1.
node(1..S) :- size(S).
0{ edge(V0, V1) }1 :- node(V0), node(V1).

Background:

0{ in_hc(V0,V1) }1 :- edge(V0,V1)
reach(V0) :- in_hc(1,V0)
reach(V1) :- in_hc(V0,V1), reach(V0)
:- node(V0), not reach(V0)
:- in_hc(V0,V1), in_hc(V0,V2), V1≠ V2

Learned definition of Hamiltonian graph:

M. Law, A. Russo, K. Broda. The complexity and generality of learning answer set programs. Artificial Intelligence Journal, 2018.



Learning Complex Definitions
Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard) 
decision problems.

3
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1 1
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Positive examples:                        Negative examples:

1{ size(1), size(2), size(3), size(4) }1.
node(1..S) :- size(S).
0{ edge(V0, V1) }1 :- node(V0), node(V1).

Background:

0{ in_hc(V0,V1) }1 :- edge(V0,V1)
reach(V0) :- in_hc(1,V0)
reach(V1) :- in_hc(V0,V1), reach(V0)
:- node(V0), not reach(V0)
:- in_hc(V0,V1), in_hc(V0,V2), V1≠ V2

Learned definition of Hamiltonian graph:

A Hamilton cycle is a subset 
of the edges in the graph.

M. Law, A. Russo, K. Broda. The complexity and generality of learning answer set programs. Artificial Intelligence Journal, 2018.



Learning Complex Definitions
Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard) 
decision problems.

3
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1 1
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2
11 2

3 4

Positive examples:                        Negative examples:

1{ size(1), size(2), size(3), size(4) }1.
node(1..S) :- size(S).
0{ edge(V0, V1) }1 :- node(V0), node(V1).

Background:

Node n is “reachable” if there 
is a path from node 1 to n.

0{ in_hc(V0,V1) }1 :- edge(V0,V1)
reach(V0) :- in_hc(1,V0)
reach(V1) :- in_hc(V0,V1), reach(V0)
:- node(V0), not reach(V0)
:- in_hc(V0,V1), in_hc(V0,V2), V1≠ V2

Learned definition of Hamiltonian graph:

A Hamilton cycle is a subset 
of the edges in the graph.

M. Law, A. Russo, K. Broda. The complexity and generality of learning answer set programs. Artificial Intelligence Journal, 2018.



Learning Complex Definitions
Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard) 
decision problems.

3
2

1 1
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3

2
11 2

3 4

Positive examples:                        Negative examples:

1{ size(1), size(2), size(3), size(4) }1.
node(1..S) :- size(S).
0{ edge(V0, V1) }1 :- node(V0), node(V1).

Background:

Node n is “reachable” if there 
is a path from node 1 to n.

0{ in_hc(V0,V1) }1 :- edge(V0,V1)
reach(V0) :- in_hc(1,V0)
reach(V1) :- in_hc(V0,V1), reach(V0)
:- node(V0), not reach(V0)
:- in_hc(V0,V1), in_hc(V0,V2), V1≠ V2

Learned definition of Hamiltonian graph:

A Hamilton cycle is a subset 
of the edges in the graph.

Every node must be 
reachable.

M. Law, A. Russo, K. Broda. The complexity and generality of learning answer set programs. Artificial Intelligence Journal, 2018.



Learning Complex Definitions
Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard) 
decision problems.

3
2

1 1

2
3

2
11 2

3 4

Positive examples:                        Negative examples:

1{ size(1), size(2), size(3), size(4) }1.
node(1..S) :- size(S).
0{ edge(V0, V1) }1 :- node(V0), node(V1).

Background:

Node n is “reachable” if there 
is a path from node 1 to n.

No node has more than one 
outgoing edge in the cycle.

0{ in_hc(V0,V1) }1 :- edge(V0,V1)
reach(V0) :- in_hc(1,V0)
reach(V1) :- in_hc(V0,V1), reach(V0)
:- node(V0), not reach(V0)
:- in_hc(V0,V1), in_hc(V0,V2), V1≠ V2

Learned definition of Hamiltonian graph:

A Hamilton cycle is a subset 
of the edges in the graph.

Every node must be 
reachable.

M. Law, A. Russo, K. Broda. The complexity and generality of learning answer set programs. Artificial Intelligence Journal, 2018.
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Learning Complex Grammars
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Previous work on learning grammars and automata has mostly been restricted to  
Regular Grammars (FSA) and Context-free Grammars (PDA).

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAI19. 



Previous work on learning grammars and automata has mostly been restricted to  
Regular Grammars (FSA) and Context-free Grammars (PDA)

Finite 
State

Push Down

Linear Bounded

Turing Machine

Learn a class of context-sensitive grammars (ASG): 
• context-free part defines the syntax of the language 
• context-sensitive parts defines semantics.

Regular

Context Free

Context Sensitive

Recursively Enumerable

Learning Complex Grammars

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAI19. 



Previous work on learning grammars and automata has mostly been restricted to  
Regular Grammars (FSA) and Context-free Grammars (PDA)

Finite 
State

Push Down

Linear Bounded

Turing Machine

Learn a class of context-sensitive grammars (ASG): 
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Existing grammar G

Positive examples 
<string, context>
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ASG Learning Task ILASP Learned ASG
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<string, context>
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Answer Set Grammars

Learning Complex Grammars
Example of context-sensitive grammar
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Learn a class of context-sensitive grammars (ASG): 
• context-free part defines the syntax of the language 
• context-sensitive parts defines semantics.

Existing grammar G

Positive examples 
<string, context>

Negative examples 
<string, context>

ASG Learning Task ILASP Learned ASG

start -> as bs cs {  false ← size(X)@1, not size(X)@2 
                              false ← size(X)@1, not size(X)@2 }
as -> “a” as        { size(X+1) ← size(X)@2 }
as ->                   { size(0) }

bs -> “b” bs        { size(X+1) ← size(X)@2 }

bs ->                   { size(0) }
cs -> “c” cs        { size(X+1) ← size(X)@2 }
cs ->                   { size(0) }

Answer Set Grammars

Learning Complex Grammars
Example of context-sensitive grammar
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Learn a class of context-sensitive grammars (ASG): 
• context-free part defines the syntax of the language 
• context-sensitive parts defines semantics.

Existing grammar G

Positive examples 
<string, context>
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                              false ← size(X)@1, not size(X)@2 }
as -> “a” as        { size(X+1) ← size(X)@2 }
as ->                   { size(0) }

bs -> “b” bs        { size(X+1) ← size(X)@2 }

bs ->                   { size(0) }
cs -> “c” cs        { size(X+1) ← size(X)@2 }
cs ->                   { size(0) }

✓“abc”         is accepted by L(G)
✓“anbncn”     is accepted by L(G)
✗ “ac”           is not accepted by L(G)

Answer Set Grammars

Learning Complex Grammars
Example of context-sensitive grammar
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Learning Generative Policy Models
Intelligent devices/systems need to self-configure to adapt their behaviour in dynamic and 
complex contexts. 

Generative Policy Model (GPM): a solution for automatic, context-aware generation of policies

Applications
Autonomous vehicle scenario  
Learning access control policies  
Logistic resupply scenario 

Deploying ASG for Policy Generation

Grammar of policy  
language

E+ (good policies)  
<string, context>

E- (wrong policies)  
<string, context>

ASG Learning Task ILASP Learn GPM

GPM

Contextual  
Information

Policies 
(Strings)

Learning ASG as Generative Policy Models



Summary of SOTA of Symbolic Learners
System Normal 

Rules
Constraints Non-

determinism
Preferences Context Noise Optimal

ASPAL ✓ ✗ ✗ ✗ ✗ ✗ ✓

XHAIL ✓ ✗ ✗ ✗ ✗ ✓ ✗

ILED ✓ ✗ ✗ ✗ ✗ ✗ ✗

OLED ✓ ✗ ✗ ✗ ✗ ✓ ✗

Inspire ✓ ✗ ✗ ✗ ✗ ✓ ✗

ILASP ✓ ✓ ✓ ✓ ✓ ✓ ✓
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What about scalability?



FastLAS: Scalable Symbolic Learner
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FastLAS: Scalable Symbolic Learner

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAI2020. 

ILASP

FastLAS

Learn a model that 
detects people meeting

SM = 3370 rules
SM = 244 rules

Event detection - CAVIAR dataset
Low-level features  
(e.g. people’s location)  
already extracted

What about if data are unstructured?



Machine Comprehension of Text

P. Chabierski, A. Russo, M. Law, K. Broda, Machine Comprehension of Text Using Combinatory Categorial Grammar and Answer Set Programs. COMMONSENSE 2017 

Facebook’s bAbI dataset 

https://dblp.org/db/conf/commonsense/commonsense2017.html#ChabierskiRLB17
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Next Step and Open Challenges
How effective is symbolic rule learning from labelled unstructured data,  
when contextual information is extracted by deep neural networks?

D. Cunnington, A. Russo, M. Law, J. Lobo, L. Kaplan. NSL: Hybrid Interpretable Learning From Noisy Raw Data, https://arxiv.org/abs/2012.05023
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Some Results…
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• Learning complex knowledge that expresses recursive concepts, non-monotonic 
conditions, constraints, preferences.  

• Learning generalisations from noisy data without overfitting the data. 
• Learning knowledge that is interpretable and that can be used to automatically 

generate explanations. 
• Learning from unstructured data if integrated with sub-symbolic methods.

In Summary
Symbolic Machine Learning is capable of

More needs to be done to:
• Handle uncertainty (if any) during the learning process and 

quantify the level of uncertainty of predictions. 
• Realise an end-to-end neural-symbolic architecture. 
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