Imperial College
London

Symbolic Machine Learning for Interpretable Al
Recent advancements and future directions

Alessandra RUsso
Imperial College London




Imperial College
London

Human-Like Learning

"Human thought can be seen as a model-building activity.
Human-like learning is the process of such model-building”™"

Humans are capable of performing cognitive activities:

e Learning from past experience
(e.qg., building models of the world that can explain the observations).

* Making predictions and generating explanations
(e.g., use learned models to generate understanding and explanation of observations)

e Revising and extending learned knowledge, based on new information
(e.g., enable compositionality of learned models)

 Communicate their learned knowledge to others
(e.g., support interpretability of learned models)

To realise human-like levels of cognition, Machine Learning solutions have to realise the
above activities.

[1] Building machines that learn and thing like people, Brendan M. Lake, Tomer D. Ulman, Joshua B. Tenenbaum, et al., Behavioral and Brain Sciences, 40, 2017.
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Machine Learning

Advantages

* Ability to learn from unstructured data.

AR RS , * Very effective in solving specific tasks,
Deep neural networks learns from human . . .
expert games and games of sefpiay. kROl Ny sometimes better than humans.

[Nature 2016] using rules of the game.

Facial emotion

recognitig Drawbacks
 Data-intensive
* [nability to generalise

l * Vulnerability to distributional shifts
Bounding box for | Object segmentation | b etwe en trai N | N g an d te St d at a

object detection .
'  earned models are not interpretable

» Cannot use prior (or learned)
knowledge
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Symbolic Machine Learning

Machine Knowledge
] . representation _
earning Svmbolic Human-readable representation of
f . o f d 4; : Knowledge
nrormation extraction frrom data Machine Learning
Rigorous inference mechanisms for

Predictions about unseen data | o
making predictions

Ability to Improve behaviour over time Can be automatically verified

VY

Symbolic Machine L earning can:

e |earn from small amount of (noisy) dataset
e incorporate existing (partial) knowledge

® |earn human-readable models

e support continuous and transfer learning
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|_earning task: informal definition

A symbolic machine learning taskisa T = <B, Sy, E, E'> and a Covers relation over T

B Background knowledge

Sv  Set of possible solutions

E* Set of positive examples

E- Setof negative examples
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A symbolic machine learning taskisa T = <B, Sy, E, E'> and a Covers relation over T

B Background knowledge

Sv  Set of possible solutions

E* Set of positive examples

E- Setof negative examples

he goal is to find a solution H in Smthat explains the given examples:

» Covers(B, H, e) for every e e E*
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|_earning task: informal definition

A symbolic machine learning taskisa T = <B, Sy, E, E'> and a Covers relation over T

=) { parent(ann, mary). parent(ann, tom). parent(tom, eve). parent(tom, ian).
female(ann). female(mary). female(eve) |}

S daughter(X,Y) « female(X). daughter(X,Y) « parent(Y,X). daughter(X,Y) + parent(Y,X), female(X) }
M

—+ |{ daughter(mary, ann). daughter(eve, tom) }

—- |{ daughter(tom, ann). daughter(eve, ann) |

he goal is to find a solution H in Smthat explains the given examples:

Different notions of Covers relation define different symbolic machine learning frameworks.

» BuHEe foreveryeeE™
E.Q. 4

» BuHKe foreveryeekbk
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|_earning task: informal definition

A symbolic machine learning taskisa T = <B, Sy, E, E'> and a Covers relation over T

=) { parent(ann, mary). parent(ann, tom). parent(tom, eve). parent(tom, ian).
female(ann). female(mary). female(eve) |}

S daughter(X,Y) « female(X). daughter(X,Y) « parent(Y,X). daughter(X,Y) + parent(Y,X), female(X) }
M

—+ |{ daughter(mary, ann). daughter(eve, tom) }

—- |{ daughter(tom, ann). daughter(eve, ann) |

he goal is to find a solution H in Smthat explains the given examples:

Different notions of Covers relation define different symbolic machine learning frameworks.

E.Q. P BuRiEe  loreveryeekt H = daughter(X,Y) « parent(Y,X), female(X)

» BuHKe foreveryeekbk
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Active molecules

+ o=N O CH =N-NH-C-ﬁIH o
|
o- 0

%\ 2

7T
0- 0

6-nitw-7.8.9.10-fe rabowdrobenzol alovrene

carly applications

» Predict mutagenicity of nitro compounds, relevant for prediction of carcinogenesis

active(fl).

atom(fl, f1,,c,21,0.817).
atom(f1, f1,, c, 21, -0.143).
atom(f1, {15, c, 21, -0.143).
bond(fl, {1, f1,, 7).
bond(f1, f1,, 15, 7).
bond(f1, f1;, f1,, 7).
logmutag(fl, 0.64).
lumo(f1, -1.785).

logp(fl, 1.01).

ring_size5(fl, [f1, {1, f1,, f15, f1,]).




Imperial College
London

carly applications

» Predict mutagenicity of nitro compounds, relevant for prediction of carcinogenesis

Active molecules active(f1).
@) B atom(f1, f1,, c, 21,0.817). H
E+ o & cnnmnon + atom(f1, f1,, c, 21,-0.143).
° ’ e atom(f1, f15, ¢, 21, -0.143). , , ,
- A 0 mutagenic(M) < ring_size5(M, L),
bond(fl, 1, f1,,7). atom(M’A | S N
_ bond(fl, f1,, f15, 7). M. A2
S 9 bond(f1, f15, f1,,7). atom (M,A2,_,_, ),
............ 6 member(Al,L),
- logmutag(fl, 0.64).
lumo(f1, -1.785). bond(M,Al,A2,2)
- T 4niteoindols logp(fl, 101)

ring_size5(fl, [f1, {1, f1,, f15, f1,]).
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carly applications

» Predict mutagenicity of nitro compounds, relevant for prediction of carcinogenesis

Active molecules active(f1).
ol B atom(f1, f1,, ¢, 21,0.817). H
E T 0w’ cmmmops + atom(f1, f1,, c, 21,-0.143).
" ° e atom(f1, f15, ¢, 21,-0.143). : : :
nitwo furazons dmitopentfcdlpyrne it eeeseene m Utage n IC(M) ‘_ rl ng—s IZeS (M ’ L) ’
bond(fl, 1, f1,,7). atom(M’Al’ s ),
bond(f1, f1,, 15, 7). —
S 9 bond(f1, f15, f1,,7). atom (M,A2,_,_, ),
@ 1(f1 oo member(A | ,L),
NH Ogmutag , U. .
lumo(f1, -1.785). bond(M,Al,A2,2)
- P - 4niteoindols logp(fl . 1.01 ) .

ring_size5(fl, [f1, {1, f1,, f15, f1,]).

» Learn regular grammars, from observations of positive and negative example strings

1 np(X,Y)e—word(“She”, X,Y).
o She | ran , quickly 5 B mod(X,Y)~word(“quickly” X.Y).

s(X,Y)enp(X,Z2), vp(Z,Y).
E+ = 5(0,3) vp(X,Y)=v(X,Y).

word(“She”,0,1)
word(“quickly”, 2,3)
word(ran,1,2)
+—v(1,3)
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carly applications

» Predict mutagenicity of nitro compounds, relevant for prediction of carcinogenesis

Active molecules active(f1).
ol B atom(f1, f1,, ¢, 21,0.817). H
E T 0w’ cmmmops + atom(f1, f1,, c, 21,-0.143).
" ° e atom(f1, f15, ¢, 21,-0.143). : : :
nito frrazons 4qivopent[cdlpyrene it eesses m Utage n IC(M) ‘_ rl ng—s IZeS (M ’ L) ’
bond(fl, 1, f1,,7). atom(M’Al’ s ),
bond(f1, f1,, fl, 7). - .
S 9 bond(f1, f15, f1,,7). atom (M,A2,_,_, ),
@ 1(f1 oo member(A | ,L),
wH ogmutag(fl, 0.64).
lumo(f1, -1.785). bond(M,Al,A2,2)
- I - 4niteoindols logp(fl . 1.01 ) .

ring_size5(fl, [f1, {1, f1,, f15, f1,]).

» Learn regular grammars, from observations of positive and negative example strings

-)

I_l

1 np(X,Y)e—word(“She”, X,Y).
o She ; ran , quickly 5 B mod(X,Y)~word(“quickly” X.Y).

s(X,Y)enp(X,Z2), vp(Z,Y).
E+ = 5(0,3) vp(X,Y)=v(X,Y).

word(“She”,0,1)
word(“quickly”, 2,3)
word(ran,1,2)
«v(1,3)

v(1, 2)

vp(Start, End) « vp(Start, Middle),
mod(Middle, End)
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carly algorithms and systems

Answer Set
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Expressivity of interpretable knowledge

carly algorithms and systems

Three Main Misconceptions:

» Models expressing recursive concepts, non-monotonic
assumptions, constraints, preferences, are thought to be too |
complex to be efticiently learned by a general purpose
symbolic machine learning algorithm.

n +

bt

» Symbolic machine learning is not robust to noise in the data.

» Symbolic machine learning is not scalable to large datasets and
large search spaces.

T —l
Progol Progol5 TopLog Metagol
Aleph Alecto
Inthelex
| | | | | | I I | | | I I : | | | ——F— >
1995 1998 1999 2000 2001 2003 2004 2006 2008 2009 2010 2011 2014 Year
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| earning complex but interpretable moaels

» Behaving autonomously in the real-world requires
learning default assumptions

succeeds(putdown, T) + not happened(move(loc1,loc?),T-2)
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» Behaving autonomously in the real-world requires
learning default assumptions

succeeds(putdown, T) + not happened(move(loc1,loc?),T-2)

06127080
» Guaranteeing correct and safe decisions require S Dolobuon o
learning constraints Goilotolons
falsity « value(V, C1), value(V, C2), same_col(C1, C2). 3’823,’:%‘,’3
falsity « value(V, C1), value(V, C2), same_row(C1, C2). S Al o £

falsity « value(V, C1), value(V, C2), same_block(C1, C2).
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| earning complex but interpretable moaels

» Behaving autonomously in the real-world requires
learning default assumptions

succeeds(putdown, T) + not happened(move(loc1,loc?),T-2)

06127080
, - . 0320|0608|250
» Guaranteeing correct and safe decisions require 3 Dolob4|oD o
. : OO0 8 8720
learning constraints 49106003
. . s00|3¢0|/00
falsity « value(V, C1), value(V, C2), same_col(C1, C2). coxGn 7010
falsity « value(V, C1), value(V, C2), same_row(C1, C2). S Al o £
falsity « value(V, C1), value(V, C2), same_block(C1, C2).

» Assisting humans in their decision making require
learning their preferences
.~ mode(Zone, walk), crime_rating(Zone, R), R > 4.[1@3]
~ mode(Zone, bus).[1@2]
~ mode(Zone, walk), distance(Zone, D).|[D@1]

| 1. Avoid \_/valking through
- a@rawith high crime
rating.

2. Minimise the

Number
of buses.

3. Minimise wayki
' , in
§ distan g
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..Our recent advancements
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..Our recent advancements
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..Our recent advancements

Non-monotonic
learning
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..Our recent advancements
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L earning Rule-based Policies

Learning user benhaviour models In pervasive systems

>

4

Devices are able to continuously learn policies from (user) past actions

_earned policies are used to automatically adapt their behaviours and reduce human intervention

{1
B

Location Co-location —.
(GPS, name) ™
Lo g D & Call properties (Contact list)

Context,
Constraints

o
User Agent ‘
l Call from Alice-at 9:00 ‘

User answers the call \
if {conditions}”

&all from Bobat 10:30

from Charles-at-11 :30‘

D. Corapi, A. Russo, E. Lupu, Inductive Logic Programming in Answer Set Programming. ILP 2011
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L earning Rule-based Policies

Learning user benhaviour models In pervasive systems

» Devices are able to continuously learn policies from (user) past actions
» Learned policies are used to automatically adapt their behaviours and reduce human intervention

answerCall(...) < conditiony, ..., conditionmaxc

answerCall(...) < condition| maxR, - ..,

=(+volume, #volume).

=(+vibrator, #vibrator).

=(+battery level, #battery level).
=(+screen_brightness, #screen_brightness).
=(+headset, #headset).

=(+screen_status, #screen_status).
=(+light_level, #light_level).

=(+battery charging, #battery charging).
weekday(+date)).

weekend(+date)).

evening(+time)).

morning(+time)). A d 5@@@
afternoon(+time)). J'\.ULJ J

in call(+date, +time)).

at(+date, +time, #cell). Gh @i@@§ Lff@LF

nearDevice(+date, +tim&, fdevice
neighbourhood(+cell, #cell)) _-.

user _been_in(+date, +t *; da 1d| \
(user_is_active(+date, +time)).
phone_charging(+date, +time)).

phone_on(+date, +time)).
user_is_using_app(+date, +time, #app)).

time before h(+time, #hour).
(tme_after h(+time, #hour).

COnditiOnmaxC,maxR

Location Co-location —
(GPS, name)

mdﬁ’\ . . Call properties (Contact list)

Context,
Constraints

y
User Agent ‘
, l Call from Alice-at 9:00 ‘

call from Bobat 10:30

User answers the call '\
if {conditions}”

DN from Charles-at-11:30
— €

D. Corapi, A. Russo, E. Lupu, Inductive Logic Programming in Answer Set Programming. ILP 2011




Imperial College
London

L earning Rule-based Policies

Learning user benhaviour models In pervasive systems

» Devices are able to continuously learn policies from (user) past actions
» Learned policies are used to automatically adapt their behaviours and reduce human intervention

answerCall(...) < conditiony, ..., conditionmaxc

answerCall(...) < condition|, maxR, ..., conditioNmaxcC,maxR

LA S 4 l\-v\-r\-’ 11 NN/ 1 gl—'l
=(+volume, #volu
=(+vibrator, #vibi

Co-location

=(+battery_level, . . ,? ‘ . .
=(+screen_bright HOW many pO||C|eS N the SearCh Space ‘ Call properties (Contact list)
=(+headset, #hea 9 -

=(+screen_status ints

=(+light level, #li

=(+battery char ((5000) maXC) maxR — ‘

weekday(+date)) ‘
Call from Alice-at 9:00

aveningnmen| 00004710 2 10147 possible

morning(+time)).

- call from Bobat 10:30
afternoon(+time))

in call(+date, +ti
at(+date, +time, #cell). ﬁ@ il ~AS T' _r
nearDevice(+date, +tim%c,' e\s?e GQ§ U©Lr

neighbourhood(+cell, #cell)). e &

user been_in(+date, +n@;@¢§n§ }d M@ms
(user_is_active(+date, +time)).
phone_charging(+date, +time)).

phone_on(+date, +time)).

user_is_using_app(+date, +time, #app)).

time before h(+time, #hour).

(ime_after h(+time, #hour).

from Charles-at11:30 ‘

D. Corapi, A. Russo, E. Lupu, Inductive Logic Programming in Answer Set Programming. ILP 2011
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L earning Rule-based Policies

Learning user benhaviour models In pervasive systems

» Devices are able to continuously learn policies from (user) past actions
» Learned policies are used to automatically adapt their behaviours and reduce human intervention

answerCall(...) < conditiony, ..., conditionmaxc

answerCall(...) < condition|, maxR, ..., conditioNmaxcC,maxR

\ " CVwiritu v [IAAYAN]

=(+volume, #volu
=(+vibrator, #vibi
=(+battery level,
=(+screen_bright
=(+headset, #hea
=(+screen_status
=(+light_level, #li
=(+battery char
weekday(+date))
weekend(+date))|
evening(+time)).
morning(+time)).
afternoon(+time)
in call(+date, +t
at(+date, +time, #cell)

nearDevice(+date, +t|me

How many policies in the search space?

((5000) maxC) maxR
5000410 = 10147 possible

es Tor

erJewce
neighbourhood(+cell, #cell)) _-.
user_been_in(+date, +1{&®) da }d m\"

(user_is_active(+date, +time)).
phone_charging(+date, +time)).

phone_ on(+date, +time)).
user_is_using_app(+date, +time, #app)).
time before h(+time, #hour).
(ime_after h(+time, #hour).

Your learning results.

Clicking on a rule will enforce it. Incoming
calls that satisfy the rule's conditions will be
automatically answered.

Rule: Accept calls: not from
contact 99676196

Co-location

™
=R

Accuracy: 77.0%
Prolog rule: [(accept(_,_,C,_,_,_. . ):-

\+C=99676196)]
Session started on 27/05/2011 09:52:55

Call properties (Contact list)
and finished on 27/05/2011 09:54:07

_ Rule: Accept calls: not from
‘ contact 99676196, OR when
‘ you're not active
Call from Alice-at 9:00
¢all from Bob-at 10:30 \+C=99676196),(acceptM,N,_,_,_,_,_,__,

Accuracy: 76.0%
Prolog rule: [(accept(_,_,C,___ . ):-
,_):- \+user_is_active(M,N))]
SeSS|on started on 27/05/2011 09:52:55
and finished on 27/05/2011 09:54:07

Rule: Accept calls: when you're

from Charlesat11 :30‘

1 |

ASPAL

D. Corapi, A. Russo, E. Lupu, Inductive Logic Programming in Answer Set Programming. ILP 2011
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L earning Rule-based Policies

Learning user benhaviour models In pervasive systems

» Devices are able to continuously learn policies from (user) past actions

_earned policies are used to automatically adapt their behaviours and reduce human intervention

ASPAL

answerCall(...) < conditiony, ..., conditionmaxc

Your learning results.

answerCall(...) < condition|, maxR, .-

Clicking on a rule will enforce it. Incoming
calls that satisfy the rule's conditions will be
autoralitany answered.

oy Conditionmaxc,maxR

Rule: Accept calls: not from
contact 99676196
Accuracy: 77.0%

‘ LA S 4
=(+volume, #volu
=(+vibrator, #vibi

TtuUuw L [IAAYAN]

Q D

Co-location

! ™ e ):-
=(+battery_level, . . APy S P W i
: . \+C=99676196
=(+screen_bright HOW maﬂy pO“CleS 1N the SearCh Space? D D Call properties (Contact list) s+essi0nstarted)(]mz7/05/2m109:52:55
=(+headset, #hea t, e TSTE T O 2 7 1O ST 2 meaia 40 7
=(+screen_status hints
=(+light_level, #li Rule: Accept calls: not from

=(+battery char
weekday(+date))
weekend(+date))|
evening(+time)).
morning(+time)).
afternoon(+time)
in call(+date, +t

((5000) maxC) maxR
5000410 = 10147 possible

at(+date, +time, #cell).

nearDevice(+date, +tim¢,

cnolces ToF

vice)).

=

neighbourhood(+cell, #cell)). ‘
user been in(+date, +n@;@¢§n§ }d

itiens

(user is active(+date, +time)).

phone charging(+date, +time)).

phone on(+date,

+time)).

user is using app(+date, +time, #app)).

time before h(+time, #hour).

(time_after_h(+time, #hour).

<

Call from Alice-at 9:00

call from Bobat 10:30

contact 99676196, OR when
you're not active

~_~ns

ACLUIOL)'. Tv-v:v
Prolog rule: [(accept(_,_,C,_,_,_. . ):-

\+C=99676196),(accept(M,N,_,_,_,_._,_,._,
_,_):-\+user_is_active(M,N))]
Session started on 27/05/2011 09:52:55

and finished on 27/05/2011 09:54:07

D

Rule: Accept calls: when you're

from Charlesat11 :30‘

1 |

D. Corapi, A. Russo, E. Lupu, Inductive Logic Programming in Answer Set Programming. ILP 2011
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The [LASP Systems

Answer Set Programming

Expressive Declarative Environment
for Reasoning Logically

Real world Real world
problem solutions

1 T

Answer Set
——> Answer Sets

Program

ILASP

ottwive Lovivall
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Answer Set Programming ILASP
Expressive Declarative Environment Expressive Declarative Environment
for Reasoning Logically for Learning Logically
Real world Real world Examples of real

Real world problem

problem solutions world solutions

e B

A Set
ASWEr 5€ =3 Answer Sets

Program

Learned Answer ‘ Examples of (partial)
Set Program Answer Sets

Desirable features for expressing (learned) knowledge in cognitive systems:

» Defaults and exceptions can be modelled using negation as failure
» Non-determinism and choice can modelled using choice rules

» Preferences can be modelled using weak constraints ILASP
o Lol
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Objective is to learn human preterences from human's choices, and provide them with
optimal, personalised suggestions with explanation.

Intelligent Urban Mobility System L ASP2

'Modes of transportation

~—— bus

—— bicycle
walk

® bus change

Trento district | Crime rating
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M. Law, A. Russo, K/ Broda. Learning weak constraints in answer set programming. TPLP 15(4-5), 2015.
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|_earning Preference Models

Objective is to learn human preterences from human's choices, and provide them with

optimal, personalised suggestions with explanation.
—j ILASP2

Suggest user different alternatives:

Intelligent Urban Mobility System o T~

' 1A oid walkin gth gh
€a with high ¢,
| t g

- car
— bus e Walk 2km through e Take the bus 4km e Take the bus 400m eTake a bus 2km
- S;{C'e an area with crime through an area with through an area with through an area with
® bus change » 7 :]‘(“;"'n;mﬁ('g“ rating of 2. crime rating of 2 crime rating of 2. crime rating 5.
Trento district | Crime ratin - -~ e Take the bus 3km e Walk 1km through e Take a second bus eWalk 2km through
l, . . - o through an area with an area with crime 3km through an area an area with crime
| Maccani - v crime rating 4. rating 5. with crime rating 4 rating 1.
+ Train station

i Centre

+ West-East
+ South East
} South

NN = BN

ILASP
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Objective is to learn human preterences from human's choices, and provide them with
optimal, personalised suggestions with explanation.

Intelligent Urban Mobility System e L ASP?

| 1. Avoid walking through

. area with high cri
" rating, gh crime
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distance

'Modes of transportation
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Trento district | Crime rating . . . . . .
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+ Train station

i Centre

+ West-East
+ South East
} South

NN = BN

Generate counter-examples User chooses A
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through an area with *Walk 1km through an
crime rating 4. area with crime rating 5.
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Objective is to learn human preterences from human's choices, and provide them with

optimal, personalised suggestions with explanation.

Predictive accuracy of ILASP2i

1A oid walking throygh

1 B at ththh rime
0.9 g0 p-00 0y " ot s e number
- e, ST 5 4 3. Minimise W,kg
0.8 ¢ - j§ Cistanc * Walk 2km through
e an area with crime
k rating of 2.
§ 0 7 e Take the bus 3km
through an area with
3 0 6 i crime rating 4.
O
® 05 |
Q |
2 04 4
0] }
> 03 %t
<C . .
02 | With equality
0.1 — Without equality Generate counter-examples
0

0 4 8 12 16 20 24 28 32 36 40

Number of examples

e Walk 2km through an
area with crime rating
of 2.

e Take the bus 3km
through an area with
crime rating 4.

>

M. Law, A. Russo, K/ Broda. Learning weak constraints in answer set programming. TPLP 15(4-5), 2015.
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Suggest user different alternatives:

e Take the bus 4km
through an area with

crime rating of 2
e Walk 1km through
an area with crime

e Take the bus 400m
through an area with

crime rating of 2.

e Take a second bus
3km through an area
with crime rating 4

eTake a bus 2km
through an area with

crime rating 5.
e Walk 2km through
an area with crime

rating 5. rating 1.

User chooses A

¢ Take the bus 4km

through an area with
crime rating of 2

eWalk 1km through an

area with crime rating 5.

ILASP




Imperial College
London

|_earning Preference Models

Objective is to learn human preterences from human's choices, and provide them with

optimal, personalised suggestions with explanation.
—“ ILASP2

Predictive accuracy of ILASP2i

1 Suggest user different alternatives:
0.9 mmﬁﬁgég¢?f?§3
08 E 3z a . \ b with
S 07 | » I[LASP?2 is able to learn preferences, reaching 80% of I
5 06 | accuracy from only 8 counter-examples. E
® 05 |
- | T ——
g 04 4
2 03¢%
< . .
02 | i With equality
01 | — Without equality Generate counter-examples User chooses A
0 4 8 12 16 20 24 28 32 36 40 + Walk 2km through an s Taketthetbusdian
2?2"’? L e s b ) th.rough an area with
Number of examples « Take the bus 3kan crime rating of 2
through an area with *Walk 1km through an
crime rating 4. area with crime rating 5.

ILASP

ottwive Lovivall

M. Law, A. Russo, K/ Broda. Learning weak constraints in answer set programming. TPLP 15(4-5), 2015.
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“ Learning from Context-dependent Examples

Objective is to learn human preterences from human's choices, and provide them with
optimal, personalised suggestions with explanation.

To scale up the number of counter-examples

context-dependent counter-examples can be i \ ILASP2i
considered. | {

Suggest user different alternatives:

e Walk 2km through e Take the bus 4km e Take the bus 400m eTake a bus 2km
an area with crime through an area with through an area with through an area with
rating of 2. crime rating of 2 crime rating of 2. crime rating 5.
e Take the bus 3km e Walk 1km through e Take a second bus eWalk 2km through
through an area with an area with crime 3km through an area an area with crime
crime rating 4. rating 5. with crime rating 4 rating 1.
e Walk 2km through an e Take the bus 4km
area with crime rating :
> | ronnasu
e Take the bus 3km &
through an area with *Walk 1km through an
crime rating 4. area with crime rating 5.

ILASP
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“ Learning from Context-dependent Examples

Objective is to learn human preterences from human's choices, and provide them with
optimal, personalised suggestions with explanation.

To scale up the number of counter-examples,
context-dependent counter-examples can be

ILASP2]

considered.

1. Avo d walkij Ing through
' B aeawthhgh crime
' rating.

Suggest user different alternatives:

e Walk 2km through e Take the bus 4km e Take the bus 400m eTake a bus 2km

2. Minimise the nymper
of buses,

) 3. Minimise walking
distance

» Walk 2km through an e Take the bus 4km an area with crime through an area with through an area with through an area with
1T 1t Tal area with crime rating i rating of 2. crime rating of 2 crime rating of 2. crime rating 5.
if itis not raining o2 > throughanares with g g g ¢
oTake the bus 3km crime rating of 2 e Take the bus 3km * Walk 1km through * Take a second bus *Walk 2km through
tﬁrfugheanu:rea with eWalk 1km through an through an area with an area with crime 3km through an area an area with crime
crime rating 4. area with crime rating 5. crime rating 4. rating 5. with crime rating 4 rating 1.

tf 1+ 1A e Walk 2km through an
|f |t 1S ralﬂlﬂg area with crime rating ( * Take the bus 4km

through an area with
9 2 crime rating of 2
e Take the bus 3km &

through an area with *Walk 1km through an Generate Counter_examples User Chooses A

crime rating 4. area with crime rating 5.

e Walk 2km through an e Take the bus 4km
2;923 with crime rating ) through an area with

e Take the bus 3km ailive i o2
through an area with *Walk 1km through an
crime rating 4. area with crime rating 5.

ILASP

M. Law, A. Russo, K. Broda. lterative Learning of Answer Set Programs from Context Dependent Examples. TPLP. 16(5-6), 2016. Leahiing Logieally
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= Learning from Context-dependent Examples

Objective is to learn human preterences from human's choices, and provide them with
optimal, personalised suggestions with explanation.

To scale up the number of counter-examples,
context-dependent counter-examples can be

ILASP2]

considered.

1. Avo d walkij Ing through
& area with hj igh crime
| rating.

Suggest user different alternatives:

Average computation time

2. Minimise the nymper
of buses,

200 . ' | 3. Minimise
. L walki
”—ASP2| ' distance e Walk 2km through e Take the bus 4km e Take the bus 400m eTake a bus 2km
180 |LASP2I_pt ——/ an area with crime through an area with through an area with through an area with
||_AS P2 rating of 2. crime rating of 2 crime rating of 2. crime rating 5.
160 + e Take the bus 3km e Walk 1km through e Take a second bus eWalk 2km through
through an area with an area with crime 3km through an area an area with crime
m 140 ¢+ crime rating 4. rating 5. with crime rating 4 rating 1.
© 120 |
=
[r—
o 100
(@)
S 80t
>
< 60 r
40! Generate counter-examples User chooses A
0 ' ' a ' ' * Walk 2km through an e Take the bus 4km
0 100 200 300 400 500 ElER LA EinE T2 through an area with
of 2
Number of examples DU O LANS EL crime rating of 2
through an area with *Walk 1km through an
crime rating 4. area with crime rating 5.

ILASP

M. Law, A. Russo, K. Broda. lterative Learning of Answer Set Programs from Context Dependent Examples. TPLP. 16(5-6), 2016. Leahiing Logieally
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= Learning from Context-dependent Examples

Objective is to learn human preterences from human's choices, and provide them with

optimal, personalised suggestions with explanation.
—“ ILASP2i

Suggest user different alternatives:

To scale up the number of counter-examples,
context-dependent counter-examples can be

considered.

Average computation time

Journey A Journey B Journey C Journey D

ILASP2i ——— | "

200

180 ILASP2i_pt — /1 o :eawith

160 | LASE2 » ILASP2i is able to learn preferences from large number of A
5 140 | examples.
g 120
*é 100 +
g 80
< 60 -

o | Generate counter-examples User chooses A

T
0 : ; t . . * Walk 2km through an * Take the bus 4km
0 100 200 300 400 500 2?2"’? WE £l A2 ) through an area with

crime rating of 2
e Take the bus 3k
Number of examples o o «Walk 1km through an

through an area with
crime rating 4. area with crime rating 5.

ILASP

M. Law, A. Russo, K. Broda. lterative Learning of Answer Set Programs from Context Dependent Examples. TPLP. 16(5-6), 2016. Leatuing Logiealty
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|_earning from Noisy Examples

Objective is to learn human preterences from human's choices, and provide them with

optimal, personalised suggestions with explanation.
—“ ILASP3

Suggest user different alternatives:

Counter-examples might be noisy as humans

might not know what they prefer.

1A oid walking throygh

‘ a with high ¢
| at ng. 'an crime

2. Minimis th
of bus Number

e Walk 2km through e Take the bus 4km e Take the bus 400m eTake a bus 2km
an area with crime through an area with through an area with through an area with
rating of 2. crime rating of 2 crime rating of 2. crime rating 5.
e Take the bus 3km e Walk 1km through e Take a second bus eWalk 2km through
through an area with an area with crime 3km through an area an area with crime
crime rating 4. rating 5. with crime rating 4 rating 1.
e Walk 2km through an e Take the bus 4km
area with crime rating :
> | ronnasu
e Take the bus 3km &
through an area with *Walk 1km through an
crime rating 4. area with crime rating 5.

ILASP

M. Law, A. Russo, K. Broda. lterative Learning of Answer Set Programs from Noisy Examples. Advances in Cognitive Systems. Vol 6, 2018.
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|_earning from Noisy Examples

Objective is to learn human preterences from human's choices, and provide them with
optimal, personalised suggestions with explanation.

Counter-examples might be noisy as humans

ILASP3

might not know what they prefer.

| .
| You prefer to.

1. Avoid walking through

' rating. A CIe

Suggest user different alternatives:

mislabelled
T T E—

2. Minimise th
€ Nnum
of buses. 2

,' 3. Minimise walking

* Walk 2}'&:“ t.hrougf;_an e Take the bus 4km distance e Walk 2km through e Take the bus 4km e Take the bus 400m e Take a bus 2km
Y LT f area with crime rating through an area with an area with crime through an area with through an area with through an area with
lf It IS N Ot ral nin g of 2. ) crime rating of 2 rating of 2. crime rating of 2 crime rating of 2. crime rating 5.
eTake the bus 3km
o A e i eWalk 1km through an e Take the bus 3km e Walk 1km through e Take a second bus eWalk 2km through
crime rating 4. area with crime rating 5. through an area with an area with crime 3km through an area an area with crime
crime rating 4. rating 5. with crime rating 4 rating 1.

S S . e Walk 2km through an e Take the bus 4km
If |t |S ral n | n g area with crime rating ( through an area with
of 2. . .
e Take the bus 3km Al il e 2

through an area with *Walk 1km through an Generate Counter—examples User Chooses A

crime rating 4. area with crime rating 5.

e Walk 2km through an e Take the bus 4km
2;923 with crime rating ) through an area with

e Take the bus 3km ailive i o2
through an area with *Walk 1km through an
crime rating 4. area with crime rating 5.

ILASP
Leawivg Logiatly

M. Law, A. Russo, K. Broda. lterative Learning of Answer Set Programs from Noisy Examples. Advances in Cognitive Systems. Vol 6, 2018.
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|_earning from Noisy Examples

Objective is to learn human preterences from human's choices, and provide them with

optimal, personalised suggestions with explanation.
—“ ILASP3

Counter-examples might be noisy as humans

might not know what they prefer.

1 | | " " .
. 5 Suggest user different alternatives:
0.9 | pddbeddit
0.8 | I
) 1 1 e Walk 2km through e Take the bus 4km e Take the bus 400m eTake a bus 2km
an area with crime through an area with through an area with through an area with
O . 7 B N rating of 2. crime rating of 2 crime rating of 2. crime rating 5.
> e Take the bus 3km e Walk 1km through e Take a second bus e Walk 2km through
O O . 6 B N through an area with an area with crime 3km through an area an area with crime
9 O 5 crime rating 4. rating 5. with crime rating 4 rating 1.
> . i 7
O R
&) B _
2 04
0.3 5% noise |
0.2 10% noise -
i 20% noise ]
0.1 Jo nol Generate counter-examples User chooses A
| 40% noise —
:
0 20 40 o660 80 100
" area with crime rating " Take the bus 4km
: through an area with
Number of ordering examples o2 D> e
through an area with *Walk 1km through an
(C) crime rating 4. area with crime ratlng 5.

ILASP

M. Law, A. Russo, K. Broda. lterative Learning of Answer Set Programs from Noisy Examples. Advances in Cognitive Systems. Vol 6, 2018.
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|_earning from Noisy Examples

Objective is to learn human preterences from human's choices, and provide them with

optimal, personalised suggestions with explanation.
—“ ILASP3

Counter-examples might be noisy as humans

might not know what they prefer.

1 l l S | | )
| ugqgest user different alternatives:
09| r s pi J°
i + Journey A Journey B Journey C Journey D
0.8 | ] I T— »
07 B N . . . . ;(.eawith
> 06| _ » ILASP3 is as effective as ILASP2i, but able to learn from noisy fue
& . crime
S 05 _ examples.
< 047 -
0.3 | 5% noise _
0.2 10% noise -
i 20% noise | _ User chooses A
o.;  40%noise Generate counter-examples
0 20 40 60 80 100
Number of ordering examples Tsz Vtvh'th:':i “ D> | throughanareswith
through an area with *Walk 1km through an
C crime rating 4. area with crime rating 5. -
(c) ILASP
o Lol

M. Law, A. Russo, K. Broda. lterative Learning of Answer Set Programs from Noisy Examples. Advances in Cognitive Systems. Vol 6, 2018.
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| earning Complex Definitions

Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard)
decision problems.

Background: Positive examples: Negative examples:

1{ size(1), size(R), size(38), size(4) } 1.
node(1l..S) :- size(S).
O{ edge(VO, V1) }1 :-node(VO), node(V1).

ILASP

M. Law, A. Russo, K. Broda. The complexity and generality of learning answer set programs. Artificial Intelligence Journal, 2018. Leauing Logioally
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Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard)
decision problems.

Background: Positive examples: Negative examples:

1{ size(1), size(R), size(38), size(4) } 1.
node(1l..S) :- size(S).

O{ edge(VO, V1) }1 :- node(VO), node(V1). \ /

Learned definition of Hamiltonian graph:

O{ in_hec(VO,V1) }1 :- edge(VO,V1)
reach(VO) :-in_hc(1,VO)

reach(V1) :-in_hc(VO,V1), reach(VO)
.- node(VO0), not reach(VO)
:-in_he(VO,V1), in_he(VO,V2), V1# V2

ILASP
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| earning Complex Definitions

Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard)
decision problems.

Background: Positive examples: Negative examples:

1{ size(1), size(R), size(38), size(4) } 1.
node(1l..S) :- size(S).

O{ edge(VO, V1) }1 :- node(VO), node(V1). \ /

Learned definition of Hamiltonian graph:

O{ in_hec(VO,V1) }1 :- edge(VO,V1)
reach(VO) :-in_hc(1,VO) i
reach(V1) :-in_hc(VO,V1), reach(VO)
.- node(VO0), not reach(VO)

:-in_he(VO,V1), in_he(VO,V2), V1# V2

A Hamilton cycle is a subset
of the edges in the graph.

ILASP
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Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard)
decision problems.

Background: Positive examples: Negative examples:

1{ size(1), size(R), size(38), size(4) } 1.
node(1l..S) :- size(S).

O{ edge(VO, V1) }1 :- node(VO), node(V1). \ /

Learned definition of Hamiltonian graph:

N.Ode n1s “reachaple” If there O{ iIl_hC(VO,Vl) } 1 edge(VO’V]') A Hamilton cycle is a subset
IS a path from node 1 to n. reach(V0) :-in_hec(1,VO) i of the edges in the graph. }

reach(V1l) :-in_hc(VO,V1), reach(VO)
.- node(VO0), not reach(VO)
:-in_he(VO,V1), in_he(VO,V2), V1# V2
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| earning Complex Definitions

Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard)
decision problems.

Background: Positive examples: Negative examples:

1{ size(1), size(R), size(38), size(4) } 1.
node(1l..S) :- size(S).

O{ edge(VO, V1) }1 :- node(VO), node(V1). \ /

Learned definition of Hamiltonian graph:

N.Ode n1s “reachaple” If there O{ in—hC(VO’V]') } 1 edge(VO’V]') A Hamilton cycle is a subset
IS a path from node 1 to n. reach(V0) :-in_hec(1,VO) -i of the edges in the graph. ]

reach(V1):-in_hc(VO,V1), reach(VO)
:- node(VO0), not reach(VO) Every node must be
:-in_he(VO,V1), in_hc(VO,VR), V1+ V2 reachable.

ILASP
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| earning Complex Definitions

Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard)
decision problems.

Background: Positive examples: Negative examples:

1{ size(1), size(R), size(38), size(4) } 1.
node(1l..S) :- size(S).

O{ edge(VO, V1) }1 :- node(VO), node(V1). \ /

Learned definition of Hamiltonian graph:

N.Ode n1s “reachaple” If there O{ in—hC(VO’V]') } 1 edge(VO’V]') A Hamilton cycle is a subset
IS a path from node 1 to n. reach(V0) :-in_hec(1,VO) -i of the edges in the graph. ]

reach(V1):-in_hc(VO,V1), reach(VO)
No node has more than one - node(VO), not reach(VO) Every node must be
outgoing edge in the cycle. :-in_hc(VO,V1), in_hc(VO,VR), V1= V2 reachable.
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| earning Complex Definitions

Symbolic Machine Learning is highly declarative, and capable of learning definitions of complex (NP-hard)
decision problems.

250

100

5% noise
90 | 225 I 10% noise
o> 80 ¢ 200 | 20% noise
o —
§ 70 | L 175 |
S 60 | _qé 150 |
% 50 t o 125
g 407 € 100 |
S 30| S 75|
r 20| 5% noise 50 |
i 10% noise
18 ~ 20% noise — 2|
O | | | |
0 40 80 120 160 200 0 40 80 120 160 200
Number of examples Number of examples
Node n is “reachable” if there O{ in_hec(VO,V1) }1 :- edge(VO,V1) A Hamilton cycle is a subset
IS a path from node 1 to n. reach(VO) :-in_hec(1,VO) of the edges in the graph.

reach(V1):-in_hc(VO,V1), reach(VO)
No node has more than one - node(V0), not reach(V0O) Every node must be
outgoing edge in the cycle. :-in_he(VO,V1), in_he(VO,VQ), V1+ V2 reachable.
ILASP
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| earning Complex Grammars

Previous work on learning grammars and automata has mostly been restricted to
Regular Grammars (FSA) and Context-free Grammars (PDA).

Recursively Enumerable Turing Machine

Context Sensitive Linear Bounded

Context Free Push Down

Finite

Regular State

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAIT9.
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| earning Complex Grammars

Previous work on learning grammars and automata has mostly been restricted to
Regular Grammars (FSA) and Context-free Grammars (PDA)

Learn a class of context-sensitive grammars (ASG):
e context-free part defines the syntax of the language
® context-sensitive parts defines semantics.

Recursively Enumerable Turing Machine

Context Free

Linear Bounded

Push Down

Finite

Regular State

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAIT9.
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Regular Grammars (FSA) and Context-free Grammars (PDA)

Learn a class of context-sensitive grammars (ASG):
e context-free part defines the syntax of the language
® context-sensitive parts defines semantics.

Recursively Enumerable Turing Machine

ontext ensmve

Context Free

Linear Bounded

Existing grammar G

Push Down

Positive examples L earned ASG
<string, context>

Negative examples
<string, context>

Finite

Regular State

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAIT9.
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| earning Complex Grammars

Example of context-sensitive grammar

Learn a class of context-sensitive grammars (ASG):
e context-free part defines the syntax of the language
® context-sensitive parts defines semantics.

Existing grammar G

Positive examples L earned ASG
<string, context>

Negative examples
<string, context>

Answer Set Grammars

AAAAAAAAAA

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAIT9.
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| earning Complex Grammars
Example of context-sensitive grammar

Learn a class of context-sensitive grammars (ASG):

start -> as bs cs { false « size(X)@1, not size(X)@2
false « size(X)@1, not size(X)@2 | o context-free part defines the syntax of the language
as->‘a‘as  {size(X+1) « size(X)@2 ) e context-sensitive parts defines semantics.
as -> { size(0) }
bs -> “b” bs { size(X+1) « size(X)@2 }
Existing grammar G
bs -> { size(0) } _\
cs->"c’cs  {size(X+1) + size(X)@2 } Positive examples
CS -> { size(0) } <string, context>

Negative examples
<string, context>

Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAI19.

M. Law, A.
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| earning Complex Grammars

Example of context-sensitive grammar

start -> as bs cs { false « size(X)@1, not size(X)@2 Learn a class of context-sensitive grammars (ASG):
false « size(X)@1, not size(X)@2 | e context-free part defines the syntax of the language
Size(X+1) « size(X)@2 ) e context-sensitive parts defines semantics.

as -> “a’ as

as -> size(0) }

{
{

bs -> “b” bs { size(X+1) « size(X)@2 }
{ Existing grammar G
{
{

iz6(0) _\
X+1) « size(X)@2 it
ize(X+1) « size(X)@2 } POSI’FIVG examples | earned ASG
! <siring, context>

bs ->

CcS -> “C” CS size(

CS -> size(0)
v abc” s accepted by L(G) <sng.contoxt>
v*arbren” s accepted by L(G) Answer Set Grammars
X “ac’ IS not accepted by L(G)

AAAAAAAAAA

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAIT9.
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| earning Generative Policy Models

o Intelligent devices/systems need to self-configure to adapt their behaviour in dynamic and

complex contexts.

o Generative Policy Model (GPM): a solution for automatic, context-aware generation of policies

al Ul DU \

language

Learning ASG as Generative Policy Models

-

good policies
<string, context>

wrong policies
<string, context>

ASG Learning Task =g ILASP W

.

~

_J

Deploying ASG for Policy Generation

GPM

Policies

Contextual (Strlngs)
Information

Applications

- Autonomous vehicle scenario

-/

-/

_earning access control policies

_ogistic resupply scenario
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Summary of SOTA of Symbolic Learners

System Normal | Constraints Non- Preferences | Context | Noise | Optimal
Rules determinism
v X X X X v

ASPAL

XHAIL v X X X X v X

ILED v X X X X X X
OLED v X X X X v X
Inspire v X X X X v X

ILASP 4 4 4 4 4 4 4
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Summary of SOTA of Symbolic Learners

Two Misconceptions Resolved:
» Complex models expressing recursive
D concepts, non-monotonic assumptions,
- constraints, preferences, can be
efficiently learned by ILASP.
Inspire » ILASP Is robust to noise in the data.

ILASP | ——— T
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Summary of SOTA of Symbolic Learners

Two Misconceptions Resolved:
» Complex models expressing recursive
D concepts, non-monotonic assumptions,
- constraints, preferences, can be
efficiently learned by ILASP.
Inspire » ILASP Is robust to noise in the data.
ILASP | | | —_—_— ———

What about scalability”?
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FastLAS: Scalable Symbolic Learner

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAI2020.
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FastLAS: Scalable Symbolic Learner

ILASP

| Background knowledge

B

- Language Bias | Search Space |
\Y/ Swm

| Positive Examples

- Negative Examples

l“" l"l

FastLAS

~ Background knowledge

A 4

~ Language Bias | OPT-Sufficient
Subset of Sm
“ Positive Examples “

El
oy}

_>4’m

E+

| Negative Examples |
E

|dstl| [oevcom

LABORATORY

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAI2020.
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FastLAS: Scalable Symbolic Learner

ILASP

Background knowledge
Language Bias Search Space
Positive Examples

-

| Negative Examples
c

FastLAS

~ Background knowledge
B
La guage Bias OPT-Sufficient BN
Subset of Sm

Positive Examples
E+

| Negative Examples |
E

—vent detectlon CAVIA

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAI2020.

R dataset

Learn a model t
detects people

nat

meeting
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FastLAS: Scalable Symbolic Learner

ILASP —vent detectlon CAVIA? dataset

Background knowledge
Language Bias Search Space
Positive Examples

e

| Negative Examples
c

Learn a model that
detects people meeting

FastLAS System Fi | Running Time
OLED [ 0.792 107s
ﬁ“am ILASP3 | 0.837 | 5233s | Sy = 3370 rules
FastLAS | 0.907 263.8s Sy = 244 rules

E-

AAAAAAAAAA

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAI2020.
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FastLAS: Scalable Symbolic Learner

—vent detection - CAVIAR dataset

Low-level features
(e.g. people’s location)
already extracted

Learn a model that
detects people meeting

System F1 Running Time
" OLED 0.792 107s
sl — S — ILASP3 | 0.837 523.3s Sm = 3370 rules
FastLAS | 0.907 263.8s Sy = 244 rules

What about If data are unstructured?

AAAAAAAAAA

M. Law, A. Russo, E. Bertino, K.Broda, K. Lobo. Representing and Learning Grammars in Answer Set Programming, AAAI2020.
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Machine Comprehension of Text
Facebook's bAbl dataset

Story: Questions:

|.  John went to the local restaurant. l. Where is John?

2. The waiter brought John a glass of 2. Where was John before he went to
water and took the order. the hotel?

3. As John was waiting, he took out 3. Who took the order?

the book and began to read . 4. Who received a glass of water?
4. The steak which he ordered finally 5. Did John have to wait?

arrived.

, 6. What did John read?

5. After John had finished the meal, he |

took the jacket but he forgot to take /- VVhat did John choose!

the book 8.  Where is the book?
6. He paid the bill and went back to 9. Where is the jacket?

the hotel.

P. Chabierski, A. Russo, M. Law, K. Broda, Machine Comprehension of Text Using Combinatory Categorial Grammar and Answer Set Programs. COMMONSENSE 2017
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Machine Comprehension of Text

Facebook’s bAb| dataset CorrectAnswer

Story: Questions:

|.  John went to the local restaurant. l. Where is John?

2. The waiter brought John a glass of 2. Where was John before he went to Learning of Common-
water and took the order. the hotel?

a sense Knowledge

3. As John was waiting, he took out 3. Who took the order? A
the book and began to read . 4. Who received a glass of water?

4. The steak which he ordered finally 5. Did John have to wait? ”_ASP
arrived. | | L1

, 6. What did John read? , ,

5. After John had finished the meal, he | Basic Ontological
took the jacket but he forgot to take /- VVhat did John choose! Features Extraction
the book. 8. Where is the book!?

6. He paid the bill and went back to 9. Where is the jacket?
the hotel.

CoreNLP+ CCG
i

text, question and
answers (correct and incorrect)

P. Chabierski, A. Russo, M. Law, K. Broda, Machine Comprehension of Text Using Combinatory Categorial Grammar and Answer Set Programs. COMMONSENSE 2017
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Facebook's bAbl dataset

Story: Questions:

|.  John went to the local restaurant. l. Where is John?

2. The waiter brought John a glass of 2.

water and took the order: the hotel?

Where was John before he went to

Machine Comprehension of Text

CorrectAnswer

I

Learning of Common-
sense Knowledge

3. As John was waiting, he took out 3. Who took the order?
the book and began to read . 4. Who received a glass of water? /A
4. The steak which he ordered finally 5. Did John have to wait? ”_ASP
arrived. L
, 6. What did John read? , ,
5. After John had finished the meal, he | Basic Ontological
took the jacket but he forgot to take /- VVhat did John choose! [ Features Extraction ]
the book 8.  Where is the book?
6. He paid the bill and went back to 9.  Where is the jacket? A
the hotel.

Automated semantic representation of

P. Chabierski, A. Russo, M. Law, K. Broda, Machine Comprehension of Text Using Combinatory Categorial Grammar and Answer Set Programs. COMMONSENSE 2017

CoreNLP+ CCG
i

text, question and
answers (correct and incorrect)

-nglish text into logic-based knowledge.
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Machine Comprehension of Text
Facebook's bAbl dataset

CorrectAnswer

Story: Questions:
|.  John went to the local restaurant. . Whe
2. The waiter brought John a glass of 2. Whe ' _

water and took the order. the t Task [ Lesaéggleg P?;C?Var;dmgn J
3. As John was waiting, he took out 3. Whc Ex. 1 6 8 9 12 15 18 \ J

the book and began to read ft 4 Whe 5 | 64.8 | 90.7 | 92.4 | 74.6 | 100.0 | 100.0 | 81.7 /A
4 z:‘rfvijeak which he ordered finally 5. Did. 10 | 100.0 | 90.7 | 92.4 | 81.8 | 100.0 | 100.0 | 87.9 ”—'AI‘ISP
5. After John had finished the meal, he 6. Whe 15 100.0 | 92.0') 100.0 | 90.6 | 100.0 | 100.0 ) 91.2 Basic Ontological

{00k the jacket but he forgot to ake 7+ Whe | 20 | 100.0 | 95.8 | 100.0 | 94.6 | 100.0 | 100.0 | 88.2 Fomtres Extraction

the book 8. Whe 25 | 100.0 | 98.9 | 100.0 | 97.0 | 100.0 | 100.0 | 92.4
6. He paid the bill and went back to 9. Whe A

Task CoreNLP+ CCG
System 1 6 8 9 12 15 18 U
Sukhbaatar et al. (MemN2N) | 99.9 | 98.0 | 93.9 | 98.5 | 100.0 | 98.2 | 90.8
Henaff et al. (EntNet) 99.3 | 70.0 | 80.8 | 68.5 | 99.2 | 422 | 91.2 text, question and
Report (CCG + ILASP) 100.0 | 98.9 | 100.0 | 97.0 | 100.0 | 100.0 | 92.4 answers (Correct and incorrect)

Automated semantic representation of

P. Chabierski, A. Russo, M. Law, K. Broda, Machine Comprehension of Text Using Combinatory Categorial Grammar and Answer Set Programs. COMMONSENSE 2017

-nglish text into logic-based knowledge.
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Next Step and Open Challenges

FastLAS

v Orders of magnitude faster that state-of-the-art ILASP
v (Can solve machine learning tasks with much larger search spaces
v Sound and complete - guaranteed to find an optimal solution
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v (Can solve machine learning tasks with much larger search spaces
v Sound and complete - guaranteed to find an optimal solution

X Requires structured data
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Next Step and Open C

FastLAS

v Orders of magnitude faster that state-of-the-art [LAS

hallenges

D

v (Can solve machine learning tasks with much larger search spaces

v Sound and complete - guaranteed to find an optima

X Requires structured data

| solution
query & feedbacks 1
[ User Interface J ‘V.
+ * answers & explanation
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|

Deep Learning |> S&X;ﬁ%g

Algorithms <I Lerning

J .
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Next Step and Open Challenges

How effective is symbolic rule learning from labelled unstructured data, [} > [1
when contextual information is extracted by deep neural networks??

Hybrid Interpretable Learning from Noisy Raw Data

AN
£i5,
[dstl] [ozveom Cxs

D. Cunnington, A. Russo, M. Law, J. Lobo, L. Kaplan. NSL: Hybrid Interpretable Learning From Noisy Raw Data, https://arxiv.org/abs/2012.05023
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Next Step and Open Challenges
How effective is symbolic rule learning from labelled unstructured data, | [}>[1 |
when contextual information is extracted by deep neural networks? = e

Hybrid Interpretable Learning from Noisy Raw Data
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D. Cunnington, A. Russo, M. Law, J. Lobo, L. Kaplan. NSL: Hybrid Interpretable Learning From Noisy Raw Data, https://arxiv.org/abs/2012.05023
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Some Results...

How effective is symbolic rule learning from labelled unstructured data,
when contextual information is extracted by deep neural networks??

Hybrid Interpretable Learning from Noisy Raw Data

(

\_

Machine Intelligence

E’

eep Learnin
Algorithms

" |

Symbolic
Machine
Lerning

|

~N

J

D. Cunnington, A. Russo, M. Law, J. Lobo, L. Kaplan. NSL: Hybrid Interpretable Learning From Noisy Raw Data, https://arxiv.org/abs/2012.05023



https://arxiv.org/abs/2012.05023

Imperial College
London

Some Results...

How effective is symbolic rule learning from labelled unstructured data, [} > [1
when contextual information is extracted by deep neural networks? y L

Hybrid Interpretable Learning from Noisy Raw Data

Sudoku Board Classification
valid valid invalid

A ! 2
\ s 12X e

7 / {13 3
2 ¢ 4

/
2

Applied Perturbation to increasing % of training examples
valid valid invalid

" = 7
V| o] T

A Y| e ¥ —
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Ly £ 4
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RN

400 examples total
5-fold cross validation:
Train split: 320 examples

Test split: 80 examples [d Stl] Z DEVCOM

D. Cunnington, A. Russo, M. Law, J. Lobo, L. Kaplan. NSL: Hybrid Interpretable Learning From Noisy Raw Data, https://arxiv.org/abs/2012.05023
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Some Results. ..

How effective is symbolic rule learning from labelled unstructured data, [} > [1

Algorithms Lerning

when contextual information is extracted by deep neural networks?? \ .

( )

Hybrid Interpretable Learning from Noisy Raw Data

Sudoku Board Classification L It e H ! I Mkttt ol (it SRR B
. o T, EE ........... b = = IR, N N R N TP
valid valid invalid | T T == { _____ _:I:
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D. Cunnington, A. Russo, M. Law, J. Lobo, L.

Kaplan. NSL: Hybrid Interpretable Learning From Noisy Raw Data, https://arxiv.org/abbs/2012.05023
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Some Results...

How effective is symbolic rule learning from labelled unstructured data,
when contextual information is extracted by deep neural networks??

Hybrid Interpretable Learning from Noisy Raw Data

\_

Machine Intelligence

[Deep Learnin% [> [ S,\Zlglﬁ?r:f

Algorithms Lerning

|

J

Sudoku Board Classification e B M ot Tttt it S —-- NSL Softmax
valid valid invalid R T = \'{ ----- —I —+= NSL EDL-GEN
- 0.95 - 4 .-+ Baseline CNN-LSTM
; ’ 2 :I: -+ 1000 4 =---- Baseline Random Forest

0.90 A

bl = 12X e

. .
. .
. -
.
. .
. * -
. s -
w0 R . .
. .
= + 0.70 1 : X : .
(] : * ! . o
.
(&} * g E .
. [ . . : .
.. A= : .
. .
0.65 1 . o -
. ‘. ., - .
. . . .ot
. . . “'
. °, - ot
. PO .
. .

( ” L{ 2/ 0.60 - e e N e
! —-- NSL Baseline (constant example penalty 10) ‘;-. ‘‘‘‘‘‘‘ :I:
‘l ? 4 0.55 1 —.- NSL Softmax %

0.80 - © .
> £ RS INRREETERYS -
5 . g
Applied Perturbation to increasing % of training examples § 0.75 1 s 600 1 =+
valid valid invalid 2 3 I
S
C
s
o
l_

400 A

I 200 1

.
.
. ®
P
we®
Y

.
wett
et
.
.

—-- NSL EDL-GEN
050

Baseline CNN-LSTM 4000 examples LS NUUUTOTT, wOUTTTTTRLLY }
----- Baseline CNN-LSTM 320 examples

1

— ) -
i .
4 . . ot
‘e - .t .
.. . Lot .
0.85 - : : g
.
. . . -T- ot .
: : . . =k
- - “‘
- .
* . . EENY
e . . . . fra,
. . P g . e,
. . - - o ey

.
.
.
.
.
.

=== Baseline Random Forest ]: ]: 01

.
.
e
.
.o
e,
e
.
.

400 examples total 0.5 L—

0 10 20 30 40 50 60 70 80 90 0 10 20 30

40

50

60 70 80 90

S_fold Cross Valldatlon- Percentage of perturbed training examples (%) Percentage of perturbed training examples (%)

Train split: 320 examples

Test split: 80 examples [ d
stl| [oevcom

D. Cunnington, A. Russo, M. Law, J. Lobo, L. Kaplan. NSL: Hybrid Interpretable Learning From Noisy Raw Data, https://arxiv.org/abs/2012.05023
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N Summary

Symbolic Machine Learning is capable of

* earning complex knowledge that expresses recursive concepts, non-monotonic
conditions, constraints, preferences.

e Learning generalisations from noisy data without overfitting the data.

e |earning knowledge that is interpretable and that can be used to automatically
generate explanations.

e |earning from unstructured data if integrated with sub-symbolic methods.

More needs to be done to:

* Handle uncertainty (if any) during the learning process and
quantify the level of uncertainty of predictions.

 Realise an end-to-end neural-symbolic architecture.
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N Summary

Symbolic Machine Learning is capable of

* earning complex knowledge that expresses recursive concepts, non-monotonic
conditions, constraints, preferences.

e Learning generalisations from noisy data without overfitting the data.

e |earning knowledge that is interpretable and that can be used to automatically
generate explanations.

e |earning from unstructured data if integrated with sub-symbolic methods.

More needs to be done to:

* Handle uncertainty (if any) during the learning process and

quantify the level of uncertainty of predictions. ( I\/Iachi\ne Intellige{nce \
Deep Learning I> Symbolic

 Realise an end-to-end neural-symbolic architecture.

Machine
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Collaborators...
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Krysia Broda Domenico Corapi Mark Law Piotr Chabierski Daniel Cunnington Jorge Lobo Elisa Bertino
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Collaborators...
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Krysia Broda Domenico Corapi Mark Law Piotr Chabierski Daniel Cunnington Jorge Lobo Elisa Bertino

Thank you for listening!

ANy questions




