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Using causal machine learning to explore 
heterogeneous responses to policies



Outline

Objective: to demonstrate how causal machine learning can support 
research in health policy evaluation

- Target: estimating heterogeneous policy effects

- Method: “Causal Forests” (Athey et al. 2019)

- Application:  evaluation of the impact of public health insurance on 
maternal health care utilisation in Indonesia



Motivation

▪ Most questions in the health and social sciences are of causal nature

– Did a new a cancer drug improve survival of patients?

– Did introducing sugar tax reduce obesity?

– Did introducing universal health insurance improve access to health care ?

Ideally want to compare 

outcome in two worlds, one 

of which is counterfactual  

“fundamental problem of 

causal inference”

T=1

T=0



Motivation

▪ How we tend to address the fundamental problem of causal 
inference?

– Randomise!

The 2019 Nobel Memorial Prize in Economics Sciences was awarded to Abhijit 

Banerjee, Esther Duflo, and Michael Kremer “for their experimental approach 

to alleviating global poverty.”



▪ How we tend to address the fundamental problem of causal inference in 
observational studies?

– Make (untestable) assumptions!
• Using external knowledge, theory

+

– Fit statistical models
• E.g. to adjust for 

differences between treated

and control populations

The research questions



Motivation
▪ Because of these challenges, policy evaluations often stop at average effects

▪ Policy maker needs information on heterogeneity in the treatment effects, to answer 
question such as

▪ Did the policy work for a given group?

▪ Who were the (relative) winners and losers?

▪ How could the design of future programmes be improved?

▪ Pre-specified subgroup analysis restrictive…

▪ Non-randomised evaluations rarely pre-specified -> “cherry picking”

▪ Can use the data to learn about what drives differential responses to a policy 

▪ Requires flexible approaches -> Machine learning can help?

▪ Recently a very active area of methodological research in causal inference 
(vanDerWeele et al. 2019, Kunzel et al. 2019, Athey, Wager et al 2019, etc…)



Case study: the heterogeneous impacts of health 
insurance

Gradual expansion of Health insurance in Indonesia
- Contributory heath insurance since the 1970s
- Subsidised health insurance for the poor since the 1990a
- 20% of population still uninsured

Questions: 
1) Does health insurance improve access to health services on average?
2) Which type of health insurance worked better
3) How do these impacts vary among populations subgroups?

• poor versus rich
• high versus low educated
• rural versus urban
• Other dimensions?

• Data: Survey of ~10,000 births: health insurance (treatment), and skilled birth 
attendance (outcome) information, ~50  covariates



Methods: potential outcomes and causal estimands

Potential 
outcomes

𝑌1 = Y
𝑌0 = ?

Giving birth assisted by a 
professional 
• if insured
• uninsured

𝑌𝑖
1

T=1

T=0

𝑌𝑖
0

𝑌𝑖
1 − 𝑌𝑖

0

Individual level 
causal effect



Methods: potential outcomes and causal estimands

Potential 
outcomes

𝑌1 = Y
𝑌0 = ?

Causal estimand

(involves 
counterfactuals)

e.g. ATE
𝐸[𝑌1-𝑌0]

Average treatment effect

• Average benefit from everyone having 
insurance vs. no one having it



Methods: potential outcomes and causal estimands

Potential 
outcomes

𝑌1 = Y
𝑌0 = ?

Average treatment effect among the 
treated (ATT)

• How much those who had health 
insurance have benefitted?

Causal estimand

(involves 
counterfactuals)

e.g. ATT
𝐸[𝑌1-𝑌0|𝑊 = 1]



Methods: potential outcomes and causal estimands

Potential 
outcomes

𝑌1 = Y
𝑌0 = ?

Average treatment effect among the 
controls (ATC)

• How much those who did not have health 
insurance would have benefitted from 
having insurance?

Causal estimand

(involves 
counterfactuals)

e.g. ATC
𝐸[𝑌1-𝑌0|𝑊 = 0]



Methods: potential outcomes and causal estimands

Potential 
outcomes

𝑌1 = Y
𝑌0 = ?

Causal estimand

e.g. CATE(X)

Conditional average treatment effect  (CATE) function:

𝜏 𝑥 = E Y𝑖 1 − Y𝑖 0 𝑋𝑖 = x



Methods: potential outcomes and causal estimands

Potential 
outcomes

𝑌1 = Y
𝑌0 = ?

Causal estimand

e.g. CATE(X)

Conditional average treatment effect  (CATE) function:

𝜏 𝑥 = E Y𝑖 1 − Y𝑖 0 𝑋𝑖 = x

- e.g. Pre-specified subgroups of interest: wealth (quintiles), education, rural 
status
- High dimensional if many (multi-valued, continuous) Xs -> challenge



The CATE estimand

Woman’s 

characteristics

• Age

• Wealth

• Education

• Region

• Birth order

• Etc.

Predicted, 

individual 

specific gain 

from having 

health 

insurance



Methods: potential outcomes and causal estimands

Potential 
outcomes

𝑌1 = Y
𝑌0 = ?

Causal estimand

e.g. CATE(X)

Identifying 
assumptions

▪ No unmeasured confounders 
𝑌1, 𝑌0 ⊥ 𝑊 | 𝑋

X: demographic, socioeconomic variables, availability of health services 

in community, birth year and province indicators

▪ Overlap (no characteristics perfectly predict insurance status)



Methods: potential outcomes and causal estimands

Potential 
outcomes

𝑌1 = Y
𝑌0 = ?

Causal estimand

e.g. CATE(X)

Estimators

(functions of 
observed data)

- Many estimators of average treatment effects aim to adjust for x covariates
- Regression, propensity score methods, double-robust methods

- Machine learning has been playing an increasing role in the construction of 
estimators of treatment effects

Identifying 
assumptions



“Causal Machine learning” combines key strengths of 
the two fields

Machine learning for 
prediction

Causal inference

Can we observe the “ground 
truth”?

Yes No (“fundamental problem of 
causal inference) -assumptions

Inference (standard errors) Not a priority Priority/well developed

Model selection Transparent
Data adaptive

Based on “theory”  (?)
Can be subjective

Inspiration: Athey S. The impact of machine learning on economics. 2018



Causal Machine learning

(1) ML for variable selection for confounding adjustment (e.g. double-lasso Belloni

et al. 2014)

(2) ML to estimate “nuisance parameters” (propensity scores, regression 
functions)

• targeted learning (van der Laan and Rose, 2011), double/debiased machine 
learning (Chernozhukov et al, 2018)

(3) Modify loss function ML algorithms to minimise bias in causal parameters of 
interest

• E.g. Causal Forests (Athey et al. 2019), R-learning (Nie and Wager, 2017)



Causal Forest to estimate CATEs
(Nie and Wager 2017, Athey et al. 2019)

Motivation: partially linear model

𝑌𝑖 = 𝑓 𝑋𝑖 +𝑊𝑖𝜏 +𝜀𝑖 for now assume 𝜏 homogenous

residualise 𝑌𝑖 and 𝑊𝑖

𝑊𝑖
𝑟𝑒𝑠= 𝑊𝑖 − p(𝑋𝑖) ) where p 𝑋𝑖 = E[𝑊𝑖| 𝑋𝑖]  (the propensity score)

𝑌𝑖
𝑟𝑒𝑠 = 𝑌𝑖 −m(𝑋𝑖) where m 𝑋𝑖 = E[𝑌𝑖| 𝑋𝑖]

- Nuisance parameters  p(𝑋𝑖)  and m(𝑋𝑖) estimated by machine learning



Causal Forest to estimate CATEs
(Nie and Wager 2017, Athey et al. 2019)

𝜏 can be estimated from the simple linear regression

𝑌𝑖
𝑟𝑒𝑠 = 𝜏 𝑊𝑖

𝑟𝑒𝑠+ 𝜀𝑖 ->       Ƹ𝜏 =
σ 𝑊𝑖−𝐸 𝑊𝑖 𝑋𝑖 {𝑌𝑖−𝐸 𝑌𝑖 𝑋𝑖 }

σ 𝑊𝑖−𝐸 𝑊𝑖 𝑋𝑖
2

- Consistent, asymptotically linear

- Cross-fitting allows for the use of a wide range of ML algorithms

Double/debiased machine learning estimator described in Chernozhukov et al. 
2018



Causal Forest to estimate CATEs
(Nie and Wager 2017, Athey et al. 2019)

Extension of the partially linear model:

𝑌𝑖 = 𝑓 𝑋𝑖 +𝑊𝑖𝜏(X) +𝜀𝑖 𝜏(X) heterogenous

𝜏 can be estimated from the simple linear regression  in a small neighbourhood 𝑁(𝑋)

𝑌𝑖
𝑟𝑒𝑠 = 𝜏(𝑋) 𝑊𝑖

𝑟𝑒𝑠+ 𝜀𝑖 ->       𝜏(𝑋) =
σ 𝑊𝑖−𝐸 𝑊𝑖 𝑋𝑖 {𝑌𝑖−𝐸 𝑌𝑖 𝑋𝑖 }

σ 𝑊𝑖−𝐸 𝑊𝑖 𝑋𝑖
2

sums over 𝑥 ϵ 𝑁 𝑥

How to choose N(X)?

Using an approach based on random forests ->  Causal Forest



Random forests for prediction (Breiman 2001)

Regression tree predicts the outcome of observation with X covariates based on average 
outcomes in a “leaf” of a tree, with similar Xes

Tree structure (partitions) selected to minimise root mean squared prediction error 
(RMSE), in a new sample



Random forests for prediction (Breiman 2001)

- To improve estimation performance, many trees built, on 
subsamples of the data and subsets of the covariates



Random forests for prediction (Breiman 2001)

Combine trees into a forest:

“Neighbouring observations” get different weights in the final predictions, based on 
the frequency they have been selected to be on the same leaf as X



Causal Forests for CATEs
(Wager and Athey 2018, Athey et al. 2019)

▪ Causal Forests modify the splitting criterion of random forest to maximise the 
treatment effect heterogeneity as opposed to minimising prediction RMSE

▪ “Causal Tree”

▪ Treatment effects estimated on a partitions of the data  (lm yres ~ wres)

▪ Choose splits to maximise differences between estimated 𝜏

▪ Do  this many times -> Causal Forest
– Save weights 𝛼𝑖(𝑋): how often observation i was used to estimate treatment effect at 𝑋



Causal Forests for CATEs
(Wager and Athey 2018, Athey et al. 2019)

▪ Weights  “plugged in” the residual on residual regression, resulting in

𝜏(𝑋) =
σ 𝛼𝑖(𝑋) 𝑊𝑖−𝐸 𝑊𝑖 𝑋𝑖 {𝑌𝑖−𝐸 𝑌𝑖 𝑋𝑖 }

σ 𝛼𝑖(𝑋) 𝑊𝑖−𝐸 𝑊𝑖 𝑋𝑖
2

▪ Asymptotic normality of estimator, inference based on resampling 
from forests  



Average treatment effects: traditional and ML 
methods give similar results

Contributory health insurance Subsidised health insurance



Results: variable importance from the  Causal 
Forests

Subsidised HI Contributory HI

Ranking
Variable importance 

measure
Variable Variable importance Variable

1 0.126 Birth order >=3 0.127 Province East Java

2 0.085 Birth year 2012 0.123 Higher education

3 0.084 Age >=31 0.083 Wealth quantile 4

4 0.075 Past covariates imputed 0.069 Province South Kalimantan

5 0.066 Cash transfer 0.066 Rural community

6 0.065 Poor card 0.060 Wealth quantile 5

7 0.063 Birth year 2014 0.055 Province West Sumatra

8 0.062 Birth order =2 0.049
Private practice in 

community

9 0.054 Province West Nusa Tenggara0.048 Senior education

10 0.046 Natural disaster 0.045 Province Banten



The CATE estimand

Woman’s 

characteristics

• Age

• Wealth

• Education

• Region

• Birth order

• Etc.

Predicted 

individual 

specific gain 

from having 

health 

insurance



Distribution of estimated individual level treatment effects from CF
(contributory health insurance)



Pre-specified subgroups CATCs from causal forests

Contributory health insurance Subsidised health insurance
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(Some) “Discovered” subgroups CATCs from causal 
forests

Contributory health insurance Subsidised health insurance
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Discussion

▪ Crucial developments in linking ML and causal inference frameworks in health and 
social sciences

▪ Causal ML can help learning about treatment effect heterogeneity

▪ For Indonesian health insurance expansion CF uncovers heterogeneity in 
treatment effects, for contributory HI (pro poor)

▪ Null results of subsidised HI can be explained by not effective HI (due to supply 
side constraints)

▪ Future avenues: learn optimal policy allocation rules, respecting constaints

▪ Challenge in health and social sciences: strong assumptions of no unobserved 
confounding

– ML developed for instrumental variable estimation and panel data settings 



Noemi.Kreif@York.ac.uk

@nkreif

New Investigator Resarch Grant: “Tailoring health 

policies to improve outcomes using machine learning, 

causal inference and operations research methods”
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Tuning parameters

Tuning parameter grf package argument in 

causal_forest() function 

Values (subsidised HI 

analysis)

Values (contributory HI 

analysis)
Fraction of the data used to build 

each tree

sample.fraction 0.472 0.500

Number of variables tried for 

each split

mtry 21 21

Minimum number of 

observations in each tree leaf

min.node.size 1 5

The fraction of data used for 

determining splits

honesty.fraction 0.620 0.500

Prunes the estimation sample 

tree such that no leaves are 

empty

honesty.prune.leaves TRUE TRUE

Maximum imbalance of a split alpha 0.091 0.05

Controls how harshly 

imbalanced splits are penalized

Imbalance.penalty 0.061 0


